Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где х i какаялибо из координат х у или z v i какаялибо з прямоугольных - фото 494

где х i какая-либо из координат х, у или z; v i какая-либо з прямоугольных составляющих скорости. (Значок d ijобозна­чает символ Кронекера, который равен единице при i=j и нулю при i№j .) Ко всем диагональным элементам S ij тензора напряжений прибавляется дополнительный член h'С·v. Если жидкость несжимаема, то С·v=0 и дополнительного члена не появляется, так что он действительно имеет отношение к внутренним силам при сжатии. Для описания жидкости, точно так же как и для описания однородного упругого тела, требуются две постоянные. Коэффициент h представляет «обыч­ный» коэффициент вязкости, который мы уже учитывали. Он называется также первым коэффициентом вязкости, а новый коэффициент h' называется вторым коэффициентом вязкости.

Теперь нам предстоит найти вязкую силу f вязк, действую­щую на единицу объема, после чего мы сможем подставить ее в уравнение (41.1) и получить уравнение движения реальной жидкости. Сила, действующая на маленький кубический объем жидкости, представляет собой равнодействующую всех сил, действующих на все шесть граней. Взяв их по две сразу, мы получим разность, которая зависит от производных напряжений, и, следовательно, от вторых производных скоростей. Это прият­ный результат, ибо он приведет нас опять к векторному урав­нению. Компонента вязкой силы, действующей на единицу объема в направлении оси х i , равна

Обычно зависимость коэффициентов вязкости от координат положения несущественна - фото 495

Обычно зависимость коэффициентов вязкости от координат положения несущественна и ею можно пренебречь. Тогда вяз­кая сила на единицу объема содержит только вторые производ­ные скорости. Мы видели в гл. 39, что наиболее общей формой вторых производных в векторном уравнении будет сумма Лапласиана (С·С)v = С 2v и градиента дивергенции (С (С·v)). Выражение (41.14) представляет как раз такую сумму с коэф­фициентами h и ( h+h'). Мы получаем

В случае несжимаемой жидкости Сv0 и вязкая сила в единице объема будет - фото 496

В случае несжимаемой жидкости С·v=0 и вязкая сила в еди­нице объема будет просто равна hС 2v. Это и все, чем обычно пользуются; однако если вам понадобится вычислить погло­щение звука в жидкости, то вам потребуется и второй член. Теперь мы можем закончить вывод уравнения движения реальной жидкости. Подставляя (41.15) в уравнение (41.1), получаем

Уравнение получилось конечно сложное но ничего не поделаешь такова - фото 497

Уравнение получилось, конечно, сложное, но ничего не поде­лаешь, такова природа.

Если мы введем W=СXv, как делали это раньше, то наше уравнение можно записать в виде

Мы снова предполагаем что единственными объемными силами являются - фото 498

Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то полу­чим

Это напоминает 409 с той только разницей что в правой части имеется еще - фото 499

Это напоминает (40.9) с той только разницей, что в правой части имеется еще одно слагаемое. Когда правая часть была равна нулю, то имелась теорема Гельмгольца о том, что вихри всегда движутся вместе с жидкостью. Теперь же в правой части появилось довольно сложное выражение, из которого, однако, не сразу же следуют физические выводы. Если бы мы пренебрегли членом СX(WXv), то получили бы диффузион­ное уравнение. Новый член означает, что вихри диффундируют в жидкости. При большом градиенте вихри расползаются в со­седние области жидкости.

Именно поэтому утолщаются кольца табачного дыма. С этим же связано красивое явление, возникающее при прохождении кольца «чистого» вихря (т. е. «бездымного» кольца, созданного с помощью описанной в предыдущей главе аппаратуры) через облако дыма. Когда оно выходит из облака, к нему «прилипает» некое количество дыма и мы видим полую оболочку из дыма. Какое-то количество завихренности Wдиффундирует в окру­жающий дым, продолжая свое движение вперед вместе с вихрем.

§ 3. Число Рейнольдса

Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых спе­циальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла урав­нению (41.17).

Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром D. Поток должен опреде­ляться уравнением (41.17) и

W=СXv (41.18)

с условием, что скорость на больших расстояниях равна не­которой постоянной V (параллельной оси х), а на поверхности цилиндра равна нулю. Так что

v я=v у=v z=0 (41.19)

при

x 2+y 2=D 2/4.

Это полностью определяет математическую задачу.

Если вы вглядитесь в эти выражения, то увидите, что в зада­че есть четыре различных параметра: h, r, D и V. Можно подумать, что нам придется иметь дело с целой серией решений для разных V, разных D и т. д. Вовсе нет. Все возможные раз­личные решения соответствуют разным значениям одного пара­метра. Такова наиболее важная общая вещь, которую мы мо­жем сказать о вязком потоке. А чтобы понять, почему это так, заметьте сначала, что вязкость и плотность появляются в виде отношения h/r, т. е. удельной вязкости. Это уменьшает число независимых параметров до трех. Предположим теперь, что все расстояния мы измеряем в единицах той единственной длины, которая появляется в задаче: диаметра цилиндра D, т. е. вместо х, у, z мы вводим новые переменные х', у', z', причем

x=x'D, y=y'D, z=z'D.

При этом параметр D из (41.19) исчезает. Точно так же если будем измерять все скорости в единицах V, т. е. если мы поло­жим v=v'V, то избавимся от V, а v ' на больших расстояниях будет просто равно единице. Поскольку мы фиксировали наши единицы длины и скорости, то единицей времени теперь должно быть D/V, так что мы должны сделать подстановку;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x