Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

что в полном согласии с теоремой как раз равно 1/с 2на поток энер­гии. Таким образом, для пучка частиц теорема оказывается вер­ной.

Верна она и для света. При изучении света (см. вып. 3) мы установили, что, когда происхо­дит поглощение света, поглоти­телю передается некоторое коли­чество импульса. Действительно, в гл. 34 (вып. 3) мы видели, что импульс равен поглощенной энер­гии, деленной на с [уравнение (34.24)]. Пусть U 0 будет энергией, падающей в секунду на единичную площадь, тогда переданный той же поверхности за то же время импульс равен U 0 /c. Но импульс распространяется со скоростью с, так что его плотность перед поглотителем должна быть равна U 0/с 2. Теорема снова справедлива.

Наконец, я приведу рассуждение Эйнштейна, которое еще раз продемонстрирует то же самое утверждение. Предположим, у нас есть вагон с какой-то большой массой М, который может без трения катиться по рельсам. В одном его конце расположено устройство, способное «выстреливать» какие-то частицы или световой импульс (совершенно безразлично, чем оно стреляет), которые ударяются о противоположный конец вагона. Следо­вательно, некоторое количество энергии, скажем U, находив­шееся первоначально на одном конце (фиг. 27.7,а), перелетает на противоположный конец (фиг. 27.7,в). Таким образом, энергия U перемещается на расстояние, равное длине вагона L. Этой энергии U соответствует масса U/с 2, так что если вагон вначале стоял, то его центр масс должен передвинуться. Эйнштейну не понравилось заключение о том, что центр масс предмета можно переместить какими-то манипуляциями внутри него. Он считал, что никакие внутренние действия не могут изменить центр масс. Но если это так, то при перемещении энергии U с одного конца на другой сам вагон должен откатиться на расстояние х

(фиг. 27.7, в). В самом деле, нетрудно убедиться, что полная масса вагона, умноженная на х, должна быть равна произведе­нию перемещенной энергии U/c 2 на длину L (при условии, что U /C 2 много меньше М), т. е.

6a Электродинамика - изображение 373

(27.22)

Теперь рассмотрим конкретный случай, когда энергия пере­носится вспышкой света. (Все рассуждения можно повторить и для частиц, но мы будем следовать за Эйнштейном, который интересовался проблемами света.) Что заставляет вагон дви­гаться? Эйнштейн рассуждал так: при испускании света должна быть отдача, какая-то неизвестная отдача с импульсом р. Именно она заставляет вагон откатиться назад. Скорость ва­гона v при такой отдаче должна быть равна импульсу отдачи, поделенному на массу М:

6a Электродинамика - изображение 374

Вагон движется с этой скоростью до тех пор пока свет не достигнет - фото 375

Вагон движется с этой скоростью до тех пор, пока свет не достигнет противоположного конца. Ударяясь, свет отдает импульс вагону и останавливает его. Если х мало, то время, в течение которого вагон движется, равно l/c, так что мы

Подставляя х в (27.22), находим

6a Электродинамика - изображение 376

Снова получилось соотношение между энергией и импульсом света. Деля это на с, находим плотность импульса g=p/c, и опять

6a Электродинамика - изображение 377

(27.23)

Вас может удивить так ли уж важна теорема о центре масс Может быть она - фото 378

Вас может удивить, так ли уж важна теорема о центре масс. Может быть, она нарушается? Возможно, но тогда вы теряете и закон сохранения момента количества движения. Предполо­жим, что наш вагончик движется по рельсам с некоторой ско­ростью и, и мы «выстреливаем» какое-то количество световой энергии от потолка к полу, например из точки А в точку В (фиг. 27.8). Посмотрим теперь на момент количества движения относительно точки Р. До того как порция энергии U покинула точку А, у нее была масса m=U 2 /c и скорость v , так что ее мо­мент количества движения был равен mvr a . Когда же она приле­тела в точку В, масса ее остается прежней, и если импульс всего вагона не изменился, то она по-прежнему должна иметь скорость v.

Фиг. 27.8. Для сохранения мо­мента количества движения отно­сительно точки Р порция энергии U должна нести импульс U/c.

Однако момент количества движения относительно точки Р будет уже mvr B . Таким образом, если вагону при излу­чении света не передается никакого импульса, т. е. если свет не переносит импульса U/c, то момент количества движения должен измениться. Оказывается, что в теории относительности сохранение момента количества движения и теорема о центре масс тесно связаны между собой. И если неверна теорема, то нарушается и закон сохранения момента количества движения. Во всяком случае, общий закон должен быть справедлив и для электродинамики, так что им можно воспользоваться для полу­чения импульса поля.

Упомянем еще о двух примерах импульса в электромаг­нитном поле. В гл. 26, §2, мы говорили о нарушении закона дей­ствия и противодействия для двух заряженных частиц, движу­щихся перпендикулярно друг другу. Силы, действующие на эти частицы, не уравновешивают друг друга, так что действие и противодействие оказываются неравными, а полный импульс вещества поэтому должен изменяться. Он не сохраняется. Но в такой ситуации изменяется и импульс поля. Если вы рас­смотрите величину импульса, задаваемую вектором Пойнтинга, то она оказывается непостоянной. Однако изменение импульса частицы в точности компенсируется импульсом поля, так что полный импульс частиц и поля все же сохраняется.

Второй наш пример — система заряда и магнита, изобра­женная на фиг. 27.6. К своему огорчению, мы обнаружили, что в этом примере энергия «бегает по кругу», но, как нам теперь известно, поток энергии и импульса пропорциональны друг дру­гу, поэтому здесь мы имеем дело с циркуляцией импульса. Но циркуляция импульса означает наличие момента количества движения. Поле обладает моментом количества движения. Пом­ните парадокс с соленоидом и зарядами на диске, описанный в гл. 17, § 4? Казалось, что при включении тока весь диск должен начать крутиться.

Остается загадка, откуда возникает этот момент количества движения? Ответ на этот вопрос такой: если у вас есть магнитное поле и какие-то заряды, то поле имеет и момент количества движения. Он возник еще при создании самого поля. Когда же поле выключается, момент количества движения отдается обратно. Так что диск в этом парадоксе начнет крутиться. Таинственный циркулирующий поток энергии, который сна­чала кажется чем-то непонятным, на самом деле абсолютно необходим. Ведь существует реальный поток импульса. Он необходим для выполнения закона сохранения момента коли­чества движения в целом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x