Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6a Электродинамика - изображение 350

(27.16)

Фиг 272 Векторы Е В и S световой волны В световой волне где EE 0 - фото 351

Фиг. 27.2. Векторы Е, В и S световой волны.

В световой волне, где E=E 0 cosw(t-х/с), средняя скорость потока энергии через единичную площадь ср, которая на­зывается «интенсивностью» света, равна среднему значению электрического поля, помноженному на e а с:

2717 Этот результат как ни странно мы уже получали в гл 31 5 - фото 352

(27.17)

Этот результат как ни странно мы уже получали в гл 31 5 вып 3 когда - фото 353

Этот результат, как ни странно, мы уже получали в гл. 31, § 5 (вып. 3), когда изучали свет. Мы получили его совсем другим путем и поэтому можем сейчас в него поверить. Когда у нас есть пучок света, то плотность энергии в пространстве задается урав­нением (27.14). Воспользовавшись теперь тем, что в световой волне сВ=Е, получаем

Однако вектор Е изменяется в пространстве поэтому средняя плотность энергии - фото 354

Однако вектор Е изменяется в пространстве, поэтому средняя плотность энергии равна

(27.18)

Далее свет распространяется со скоростью с поэтому можно думать что энергия - фото 355

Далее, свет распространяется со скоростью с, поэтому можно думать, что энергия, проходящая в секунду через квадратный метр, равна произведению с на количество энергии в кубическом метре, т. е.

Все в порядке. Мы снова получили выражение (27.17).

Возьмем теперь другой пример, на этот раз очень любопыт­ный. Рассмотрим поток энергии в медленно заряжающемся кон­денсаторе. (Мы не хотим сейчас иметь дело со столь высокими ча­стотами, при которых конденсатор становится похожим на резо­нансную полость, но нам не нужен и постоянный ток.) Возьмем обычный конденсатор с круглыми параллельными пластинами (фиг. 27.3). Между ними создается почти однородное электри­ческое поле, которое изменяется с течением времени. Полная электромагнитная энергия внутри конденсатора в любой момент равна произведению плотности энергии и на объем. Если радиус пластин равен а, а расстояние между ними h, то полная энергия, заключенная между пластинами, будет

6a Электродинамика - изображение 356

(27.19)

6a Электродинамика - изображение 357

С изменением напряженности Е эта энергия тоже меняется. Когда конденсатор заряжается, внутренний объем приобретает энергию со скоростью

(27.20)

Так что должен существовать поток энергии, направленный откуда-то со стороны внутрь объема. Вы, конечно, думаете, что он идет от проводов, заряжающих конденсатор,— а вот и нет! Поток внутрь никоим образом не может идти с этой стороны, так как Е перпендикулярно к пластинам, а поэтому ЕXВ должно быть параллельно им.

Вы вероятно помните что при зарядке конденсатора возникает магнитное поле - фото 358

Вы, вероятно, помните, что при зарядке конденсатора воз­никает магнитное поле, которое направлено по окружности вокруг оси. Об этом говорилось в гл. 23. Воспользовавшись последним уравнением Максвелла, мы там нашли, что магнитное поле на краю конденсатора определяется выражением

или

6a Электродинамика - изображение 359

Направление его показано на фиг. 27.3. Таким образом, на краях конденсатора, как видно из рисунка, возникает поток энергии, пропорциональный ЕXВ. Так что энергия на самом деле втекает в конденсатор не со стороны проводов, а со стороны окружаю­щего его пространства.

Фиг 273 Вблизи заряженного конденсатора вектор Пойнтинга S направлен внутрь - фото 360

Фиг. 27.3. Вблизи заряженного конденсатора вектор Пойнтинга S направлен внутрь него

Фиг 274 Поле вне конденсатора заряженного двумя очень удаленными зарядами - фото 361

Фиг. 27.4. Поле вне конденсатора, заряженного двумя очень удален­ными зарядами.

Давайте проверим, согласуется ли полный поток через всю поверхность между краями пластин со скоростью изменения внутренней энергии. Для этого лучше всего повторить весь путь, проделанный нами при выводе выражения (27.15). Посмотрим, к чему он приведет. Площадь поверхности равна 2pah, а абсолютная величина S=e 0c 2(EXB) равна

6a Электродинамика - изображение 362

6a Электродинамика - изображение 363

так что полный поток энергии будет

Это совпадает с уравнением (27.20). Удивительная вещь! Ока­зывается, при зарядке конденсатора энергия идет туда не через провода, а через зазор между краями пластин. Вот что говорит нам эта теория!

Как это может быть? Вопрос не из легких, но вот вам один из способов рассуждения. Предположим, у нас есть заряды, расположенные над и под конденсатором вдали от него. Когда такие заряды расположены вдалеке, то конденсатор окружает хотя и слабое, но необычайно протяженное поле (фиг. 27.4). Затем, когда заряды подходят все ближе и ближе, поле стано­вится все сильнее и сильнее и все теснее «обнимает» конденсатор. Так что энергия поля, которая вначале была далеко, движется «по направлению» к конденсатору и в конце концов входит в про­странство между пластинами.

В качестве следующего примера давайте посмотрим, что происходит с кусочком провода (с ненулевым сопротивлением), по которому течет ток. Поскольку провод обладает каким-то сопротивлением, то вдоль него действует электрическое поле, которое порождает ток, а в результате падения потенциала вдоль провода существует также параллельное его поверхности электрическое поле вне провода (фиг. 27.5). Кроме того, наличие тока порождает также магнитное поле, направленное по окружности вокруг провода.

Фиг 275 Вектор Пойнтинга S вблизи провода с током Векторы Е и В - фото 364

Фиг. 27.5. Вектор Пойнтинга S вблизи провода с током.

Векторы Е и В направлены под прямым углом, а поэтому вектор Пойнтинга направлен радиально, как это показано на рисунке. Внутрь проводника со всех сторон втекает энергия. Она, разумеется, должна быть равна энергии, теряемой проводником в виде тепла.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x