Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 3. Плотность энергии и поток энергии в электромагнитном поле

Идея заключается в том что должны существовать плотность энергии u и поток S - фото 333

Идея заключается в том, что должны существовать плот­ность энергии u и поток S, которые зависят только от полей Е и В. [В электростатике, например, плотность энергии, как мы знаем, можно записать в виде 1/ 2e 0(Е·Е).] Разумеется, u и S могут зависеть от потенциалов и чего-то другого, но давайте лучше посмотрим, что мы можем написать. Попытаемся перепи­сать величину Е·j в таком виде, чтобы она стала суммой двух слагаемых, одно из которых было бы производной по времени от некоторой величины, а второе — дивергенцией. Тогда первую величину мы бы назвали и, а вторую — S (разумеется, с надле­жащими знаками). Обе величины должны быть выражены только через поля, т. е. мы хотим записать наше равенство в виде

(27.6)

причем левая часть уравнения должна выражаться только через поля Как это - фото 334

причем левая часть уравнения должна выражаться только через поля. Как это сделать? Разумеется, нужно воспользоваться уравнениями Максвелла. Из уравнения для ротора В имеем

Подставляя это в 276 получаем выражение его только через Еи В 277 - фото 335

Подставляя это в (27.6), получаем выражение его только через Еи В:

(27.7)

Работа частично нами уже закончена. Последнее слагаемое есть производная по времени — это (д/дt)( 1 / 2 e 0 Е · Е).

Итак, 1/ 2 e 0Е·Е должно быть по крайней мере частью u. Такое же выражение получалось у нас и в электростатике. А теперь единственное, что нам остается сделать,— это превра­тить в дивергенцию чего-то второе слагаемое.

Заметьте, что первое слагаемое в правой части (27.7) пере­писывается в виде

6a Электродинамика - изображение 336

(27.8)

вы знаете из векторной алгебры, что (aXb)·c равно а·(bXc), поэтому первое слагаемое принимает вид

6a Электродинамика - изображение 337

(27.9)

т е получилась дивергенция чегото к которой мы так стремились - фото 338

т. е. получилась дивергенция «чего-то», к которой мы так стре­мились. Получилась, но только все это неверно! Я предупреждал вас, что оператор С только «похож» на вектор, а на самом деле он не «настоящий» вектор. Вспомните, что в дифференциальном исчислении существует дополнительное соглашение: когда опе­ратор производной стоит перед произведением, он действует на все стоящее правее него. В уравнении (27.7) оператор С дей­ствует только на В и не затрагивает Е. Но если бы мы записали его в форме уравнения (27.9), то общепринятое соглашение гово­рило бы, что Сдействует как на В, так и на Е. Так что это не одно и то же. В самом деле, если расписать С·(ВXЕ) по ком­понентам, то можно убедиться, что оно равно E· (СXB) плюс какие-то другие слагаемые. Это напоминает взятие производной от произведения в обычном анализе. Например,

Вместо того чтобы выписать все компоненты С· ( BX E), мне бы хотелось показать вам один трюк, очень полезный в за­дачах такого рода. Он позволит вам всюду в выражениях, содер­жащих оператор С, пользоваться правилами векторной алгебры, не попадая впросак. Трюк состоит в отбрасывании (по крайней мере на время) правил дифференциального исчисления относи­тельно того, на что действует оператор производной. Вы знаете, что порядок сомножителей важен в двух различных случаях. Во-первых, в дифференциальном исчислении: f(d/dx)g не то же самое, что g(d/dx)f; и, во-вторых, в векторной алгебре: aXb отличается от bXа. Мы можем, если захотим, на минуту отка­заться от правил дифференциального исчисления. Вместо того чтобы говорить, что производная действует на все стоящее правее от нее, мы примем новое правило, избавляющее нас от порядка, в котором записаны сомножители. После этого мы можем крутить ими, как хотим, без всяких помех.

Вот наше новое правило: с помощью индекса мы будем ука­зывать, на что же именно действует дифференциальный опера­тор; при этом порядок сомножителей не имеет никакого значе­ния. Допустим, что оператор д/дх мы обозначили через D. Тогда символ D f говорит, что берется производная только функции

6a Электродинамика - изображение 339

Но если мы имеем выражение D f fg, то оно означает

6a Электродинамика - изображение 340

Заметим теперь что согласно нашему новому правилу fD f g означает то же - фото 341

Заметим теперь, что, согласно нашему новому правилу, fD f g означает то же самое. Одно и то же выражение можно записать любым из следующих способов:

Вы видите, что D f может стоять даже после всего. (Странно, почему такому удобному обозначению обычно не учат в книгах по математике и физике.)

Вы, пожалуй, удивитесь: а что, если я хочу написать произ­водную от fg? Если мне нужна производная от обоих членов? Это очень легко: вы пишете D f (fg)+D g (fg), т.e. g(df/dx)+f(dg/dx), что в старых обозначениях как раз равно d(fg)/dx.

Вы сейчас увидите, как просто теперь получить новое выра­жение для С·(ВXЕ). Начнем с перехода к новому обозначению и напишем

2710 Как только мы сделали это уже нет больше нужды придерживаться - фото 342

(27.10)

Как только мы сделали это, уже нет больше нужды придержи­ваться строгого порядка. Мы всегда знаем, что С Eдействует только на Е, a С Bдействует только на В. При этих обстоятель­ствах оператором С можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различ­ные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е·(С BXВ). [Надеюсь, вы помните, что a·(bXc) = b·(cXa).] А последний — как В·(EXС E). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вер­нуться к старым обозначениям, то должны будем расположить операторы С так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у С. Второй же требует некоторой реорганизации, чтобы оператор С поставить перед Е. Этого можно

добиться переставляя сомножители в векторном произведении и меняя знак - фото 343

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x