Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы, вероятно, помните, что поля нужны для нахождения действующих на заряды сил и что именно эти силы определяют их движение. Так что связь движения зарядов с силами, разу­меется, тоже есть часть электродинамики.

На отдельный заряд, находящийся в полях Е и В, действует

2623 При небольших скоростях эта сила равна произведению массы на - фото 299

(26.23)

При небольших скоростях эта сила равна произведению массы на ускорение но - фото 300

При небольших скоростях эта сила равна произведению массы на ускорение, но истинный закон, справедливый при любых скоростях, гласит: сила равна dp/dt. Подставляя p=m 0 v/Ц(1-v 2/c 2), находим релятивистское уравнение движения заряда:

(26.24)

Теперь мы хотим обсудить это уравнение с точки зрения тео­рии относительности. Поскольку уравнения Максвелла запи­саны у нас в релятивистской форме, интересно посмотреть, как в релятивистской же форме выглядят уравнения движения. Посмотрим, можно ли переписать уравнения движения в четы­рехмерных обозначениях.

Мы знаем, что импульс есть часть четырехмерного вектора p mс энергией m 0/Ц(1- v 2/с 2) в качестве временной компоненты, так что мы надеемся заменить левую часть уравнения (26.24) на dp m /dt. Теперь нам нужно найти только четвертую компоненту силы F. Эта компонента должна быть равна скорости изменения энергии или скорости совершения работы, т. е. F·v. Так что правую часть уравнения (26.24) желательно было бы записать в виде четырехвектора типа (F·v, F x , F y , F z ), Однако эти вели­чины не составляют четырехвектора.

Производная четырехвектора по времени не будет больше четырехвектором, так как d/dt требует для измерения t неко­торой специальной системы отсчета. С этой трудностью мы уже сталкивались раньше, когда пытались сделать четырехвектор из скорости v. Тогда мы попытались считать, что роль временной компоненты скорости играет cdt/dt=c. Но на самом деле величины

2625 не образуют четырехвектора После этого мы обнаружили что их можно - фото 301

(26.25)

не образуют четырехвектора. После этого мы обнаружили, что их можно превратить в компоненты четырехвектора, если помножить каждую на 1

Ц1v 2 с 2 Четырехмерной скоростью u m оказался вектор 2626 Вот в - фото 302

/Ц(1-v 2 2 ). «Четырехмерной ско­ростью» u m оказался вектор

(26.26)

Вот в чем фокус! Нужно умножать производную d/dt на 1/Ц(1-v 2/с 2), если мы хотим превратить ее компоненту в четырехвектор.

Итак, вторая гипотеза: четырехвектором должна быть ве­личина

2627 Но что такое v Это уже скорость частицы а не скорость системы - фото 303

(26.27)

Но что такое v Это уже скорость частицы а не скорость системы координат - фото 304

Но что такое v? Это уже скорость частицы, а не скорость системы координат! Таким образом, обобщением силы на четырехмерное пространство будет величина f m:

(26.28)

которую мы назовем «4-силой». Она уже четырехвектор, и ее пространственными компонентами будут уже не F, а

F/Ц(1-v 2/c 2).

Почему же f mчетырехвектор? Неплохо бы понять, что это за таинственный множитель 1/Ц(1-v 2/с 2). Так как мы встре­чаемся с ним уже второй раз, то самое время посмотреть, почему производная d/dt всегда должна входить с одним и тем же

множителем. Ответ заключается вот в чем. Когда мы берем производную по времени некоторой функции х, то подсчитываем приращение Dx за малый интервал Dt переменной t. Но в другой

системе отсчета интервал At может соответствовать изменению как t', так и х', так что при изменении только t' изменение х будет другим. Для наших дифференцирований следовало бы найти такую переменную, которая была бы мерой «интервала» в пространстве-времени и оставалась бы той же самой во всех системах отсчета. Когда в качестве этого интервала мы принимаем приращение Dx, то оно будет тем же во всех системах отсчета. Когда частица «движется» в четырехмерном пространстве, то возникают приращения как Dt, так и Dx, Dy, Dz. Можно ли из них сделать интервал? Да, они образуют компоненты приращения четырехвектора х m =(сt, х, у, г), так что, если определить величину D s через

что представляет четырехмерное скалярное произведение то в ней мы приобретаем - фото 305

что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из вели­чины As или ее предела ds, мы можем определить параметр

6a Электродинамика - изображение 306

Хорошим четырехмерным оператором будет и производ­ная по s, т. е. d/ds, так как она инвариантна относительно пре­образований Лоренца.

Для движущейся частицы ds легко связывается с dt Для точечной частицы 2630 - фото 307

Для движущейся частицы ds легко связывается с dt. Для точечной частицы

(26.30)

6a Электродинамика - изображение 308

а

Таким образом, оператор

6a Электродинамика - изображение 309

есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости

6a Электродинамика - изображение 310

Теперь мы видим, почему Ц(l- v 2 /c 2 )поправляет дело.

Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траекто­рии частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Dx=Dy=Dz=0, a Ds=Dt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.

Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:

6a Электродинамика - изображение 311

(26.32)

где f mопределяется формулой (26.28). Импульс же р mможет быть записан в виде

6a Электродинамика - изображение 312

(26.33)

6a Электродинамика - изображение 313

где координаты x m =(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x