Ричард Фейнман - 6a. Электродинамика
- Название:6a. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6a. Электродинамика краткое содержание
6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Смотря по тому, какова частота w, наблюдаются два интересных случая. Если w 2меньше 4/LC, то второе слагаемое под корнем меньше первого, и импеданс z 0станет действительным числом. Если же w 2больше 4/LС, то импеданс z 0станет чисто мнимым числом и его можно записать в виде
Раньше мы сказали, что цепь, составленная из одних только мнимых импедансов, таких, как индуктивности и емкости, будет иметь чисто мнимый импеданс. Но как же тогда выходит, что в той цепи, которую мы сейчас рассматриваем (а в ней есть только одни L и С), импеданс при частотах ниже Ц4/LC представляет собой чистое сопротивление?
Фиг. 22.20. Лестница L—C, изображенная двумя эквивалентными способами.
Для высоких частот импеданс чисто мнимый, в полном согласии с нашим прежним утверждением. Для низких же частот импеданс — чистое сопротивление и поэтому поглощает энергию. Но как может цепь, подобно сопротивлению, непрерывно поглощать энергию, если она составлена только из индуктивностей и емкостей? Ответ состоит в том, что этих емкостей и самоиндукций бесконечное множество, и получается, что, когда источник соединен с цепью, он обязан сперва снабдить энергией первую индуктивность и емкость, затем вторую, третью и т. д. В цепях подобного рода энергия непрерывно и с постоянной скоростью отсасывается из генератора и безостановочно течет в цепь. Энергия запасается в индуктивностях и емкостях вдоль цепи.
Эта идея подсказывает интересную мысль 0 том, что фактически происходит внутри цепи. Следует ожидать, что если к переднему концу цепи подключить источник, то действие этого источника начнет распространяться вдоль по цепи к бесконечному концу. Распространение волн вдоль линии очень похоже на излучение от антенны, которая отбирает энергию от питающего ее источника; точнее, можно ожидать, что такое распространение происходит, когда импеданс действителен, т. е. когда co меньше Ц4/LC . Но когда импеданс чисто мнимый, т. е. при co, больших Ц4/LC, то такого распространения ожидать не следует.
§ 7. Фильтры
В предыдущем параграфе мы видели, что бесконечная лестничная сеть (см. фиг. 22.20) непрерывно поглощает энергию, если эта энергия подводится с частотой, которая ниже некоторого критического значения Ц4/LC, называемого граничной частотой w 0. У нас возникла мысль, что этот эффект можно понять, основываясь на представлении о непрерывном переносе энергии вдоль линии. С другой стороны, на высоких частотах (при w >w 0) непрерывного поглощения энергии не бывает; тогда следует ожидать, что токи, видимо, не смогут «проникнуть» далеко вдоль линии. Поглядим, верны ли эти представления.
Пусть передний конец лестницы соединен с каким-то генератором переменного тока, и нас интересует, как выглядит напряжение, скажем, в 754-м звене лестницы. Поскольку сеть бесконечна, при переходе от одного звена к другому происходит всегда одно и то же; так что можно просто посмотреть, что случается, когда мы переходим от n-го звена к (n+1)-му. Токи I n и напряжения V nмы определим так, как показано на фиг. 22.21, а.
Фиг. 22.21. Нахождение фактора распространения лестницы.
Напряжение V n +1 можно получить из V n , если вспомнить, что остаток лестницы (за n-м звеном) всегда можно заменить ее характеристическим импедансом z 0; и тогда достаточно проанализировать только схему фиг. 22.21, б. Мы прежде всего замечаем, что каждое V n , поскольку это напряжение на зажимах сопротивлеиия z 0, должно быть равно I n z 0 . Кроме того, разность между V n и V n + l равна просто I n z 1 :
Получается отношение
которое можно назвать фактором распространения для одного звена лестницы; обозначим его a. Для всех звеньев
(22.29)
и напряжение за n -м звеном равно
Теперь ничего не стоит найти напряжение за 754-м звеном; оно просто равно произведению e на 754-ю степень a.
Как выглядит a для лестницы L— С на фиг. 22.20, а? Взяв z 0из уравнения (22.27) и г 1 =iwL, получим
Если частота на входе ниже граничной частоты w 0 =Ц4/LС, то корень — число действительное, и модули комплексных чисел в числителе и знаменателе одинаковы. Поэтому значение a по модулю равно единице; можно написать
а это означает, что величина (модуль) напряжения в каждом звене одна и та же; меняется только фаза. Она меняется на число d; оно на самом деле отрицательно и представляет собой «задержку» напряжения по мере того, как последнее проходит по сети. А для частот выше граничной частоты w 0лучше вынести в числителе и знаменателе (22.31) множитель i и переписать его в
(22.32)
Теперь фактор распространения a — число действительное, притом меньшее единицы. Это означает, что напряжение в некотором звене всегда меньше напряжения в предыдущем звене; множитель пропорциональности равен а. При частотах выше w 0напряжение быстро спадает по мере движения вдоль сети. Кривая модуля a как функции частоты похожа на график, приведенный на фиг. 22.22.
Мы видим, что поведение а как выше, так и ниже w 0согласуется с нашим представлением о том, что сеть передает энергию при w0и задерживает ее при w>w 0. Говорят, что сеть «пропускает» низкие частоты и «отбрасывает», или «отфильтровывает», высокие. Всякая сеть, устроенная так, чтобы ее характеристики менялись указанным образом, называется «фильтром». Мы проанализировали «фильтр низкого пропускания», или «низких частот».
Вас может удивить — к чему все это обсуждение бесконечных сетей, если на самом деле они невозможны? Но вся хитрость в том и заключается, что те же характеристики вы обнаружите и в конечной сети, если заключите ее импедансом, совпадающим с характеристическим импедансом z 0. Практически, конечно, невозможно точно воспроизвести характеристический импеданс несколькими простыми элементами, такими, как R, L и С. Но в некоторой полосе частот нередко этого можно добиться в хорошем приближении. Этим способом можно сделать конечную фильтрующую сеть со свойствами, очень близкими к тем, которые проявляются в бесконечном фильтре. Скажем, лестница L—С будет во многом вести себя так, как было описано, если на конце ее помещено чистое сопротивление R =Ц L/C.
Читать дальшеИнтервал:
Закладка: