LibKing » Книги » sci-phys » Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком). Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.87/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

(15.8)

Но попав в область где В на обеих сторонах 1 и 2 почти одинаково мы имеем - фото 14

Но, попав в область, где В на обеих сторонах 1 и 2 почти оди­наково, мы имеем право записать интеграл в виде

где В — поле в центре петли. Вся вложенная механическая энергия оказывается равной

Это согласуется с выражением для энергии 154 выбранным нами прежде - фото 15

Это согласуется с выражением для энергии (15.4), выбранным нами прежде.

Конечно тот же вывод получился бы если бы мы до интегрирования сложили все - фото 16

Конечно, тот же вывод получился бы, если бы мы до инте­грирования сложили все силы, действующие на петлю. Если бы мы обозначили через В 1 поле у стороны 1 а через В 2 — поле у стороны 2, то вся сила, действующая в направлении х, оказа­лась бы равной

Если петля «узкая», т. е. если В 2 и В 1 не очень различаются между собой, то можно было бы написать

6 Электродинамика - изображение 17

6 Электродинамика - изображение 18

Так что сила была бы равна

(15.10)

Вся работа произведенная внешними силами над петлей равнялась бы а это - фото 19

Вся работа, произведенная внешними силами над петлей, рав­нялась бы

а это опять mB Но теперь нам становится понятно почему получается что - фото 20

а это опять - mB. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из

Другой наш результат состоит в следующем. Хоть и не исклю­чено, что не все виды энергии вошли в формулу U мех= m·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.

§ 2. Механическая и электрическая энергии

Теперь мы хотим пояснить, почему энергия U мех, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчерк­нули, что ею можно пользоваться как энергией, когда вычис­ляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все так выходит.

Представим, что петля на фиг. 15.2 движется в направлении + х, а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости v y в том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет произво­диться работа F y v y , где v y компонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами, мы назовем электрической. Оказывается, что когда петля движется в однородном поле, то полная электриче­ская работа равна нулю, потому что на одной части петли работа положительная, а на другой — равная ей отрица­тельная. Но при движении контура в неоднородном поле это не так — тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли U мехв (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.

Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть мо­жет, если бы провод двигался достаточно медленно, этой элект­рической энергией можно было бы вообще пренебречь. Дейст­вительно, скорость, с какой высвобождается электрическая энер­гия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произве­дению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.

Возьмем кусок провода единичной длины по которому течет ток I Провод движется - фото 21

Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и маг­нитному полю В со скоростью v; провод. Благодаря наличию тока сами электроны обладают скоростью дрейфа v дрейф вдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна q e v провод В. Значит, скорость, с какой производится электрическая работа, равна Fv дрейф= (q ev провод В)v дрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:

Но Nq еv дрейфравно току I в проводе так что И поскольку ток поддерживается - фото 22

Но Nq еv дрейфравно току I в проводе, так что

И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.

Но заметьте, что сила, действующая на провод, равна IB; значит, IBv провод— это механическая работа, выполняемая над проводом в единицу времени, dU мех /dt = IBv провод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!

Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из заря­дов в проводе, равна

Скорость с которой производится работа равна 1512 Если электрического - фото 23

Скорость, с которой производится работа, равна

1512 Если электрического поля нет то остается только второе слагаемое а - фото 24

(15.12)

Если электрического поля нет, то остается только второе слага­емое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рас­суждения применимы лишь к проводам в постоянных магнит­ных полях.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img