Ричард Фейнман - 6. Электродинамика
- Название:6. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6. Электродинамика краткое содержание
6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(15.8)
Но, попав в область, где В на обеих сторонах 1 и 2 почти одинаково, мы имеем право записать интеграл в виде
где В — поле в центре петли. Вся вложенная механическая энергия оказывается равной
Это согласуется с выражением для энергии (15.4), выбранным нами прежде.
Конечно, тот же вывод получился бы, если бы мы до интегрирования сложили все силы, действующие на петлю. Если бы мы обозначили через В 1 поле у стороны 1 а через В 2 — поле у стороны 2, то вся сила, действующая в направлении х, оказалась бы равной
Если петля «узкая», т. е. если В 2 и В 1 не очень различаются между собой, то можно было бы написать
Так что сила была бы равна
(15.10)
Вся работа, произведенная внешними силами над петлей, равнялась бы
а это опять - mB. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из
Другой наш результат состоит в следующем. Хоть и не исключено, что не все виды энергии вошли в формулу U мех= m·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.
§ 2. Механическая и электрическая энергии
Теперь мы хотим пояснить, почему энергия U мех, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчеркнули, что ею можно пользоваться как энергией, когда вычисляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все так выходит.
Представим, что петля на фиг. 15.2 движется в направлении + х, а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости v y в том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет производиться работа F y v y , где v y — компонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами, мы назовем электрической. Оказывается, что когда петля движется в однородном поле, то полная электрическая работа равна нулю, потому что на одной части петли работа положительная, а на другой — равная ей отрицательная. Но при движении контура в неоднородном поле это не так — тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли U мехв (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.
Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть может, если бы провод двигался достаточно медленно, этой электрической энергией можно было бы вообще пренебречь. Действительно, скорость, с какой высвобождается электрическая энергия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произведению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.
Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и магнитному полю В со скоростью v; провод. Благодаря наличию тока сами электроны обладают скоростью дрейфа v дрейф вдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна q e v провод В. Значит, скорость, с какой производится электрическая работа, равна Fv дрейф= (q ev провод В)v дрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:
Но Nq еv дрейфравно току I в проводе, так что
И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.
Но заметьте, что сила, действующая на провод, равна IB; значит, IBv провод— это механическая работа, выполняемая над проводом в единицу времени, dU мех /dt = IBv провод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!
Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из зарядов в проводе, равна
Скорость, с которой производится работа, равна
(15.12)
Если электрического поля нет, то остается только второе слагаемое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рассуждения применимы лишь к проводам в постоянных магнитных полях.
Читать дальшеИнтервал:
Закладка: