Ричард Фейнман - 5. Электричество и магнетизм
- Название:5. Электричество и магнетизм
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 5. Электричество и магнетизм краткое содержание
5. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Уравнение диффузии появляется во многих физических задачах: о диффузии газов, диффузии нейтронов и других. Мы уже обсуждали физику некоторых таких явлений в вып. 4, гл. 43. Теперь перед вами полное уравнение, описывающее диффузию в самом общем виде. Немного позже мы займемся решением уравнения диффузии, чтобы посмотреть, как распределяется температура в некоторых случаях. А сейчас вернемся к рассмотрению других теорем о векторных полях.
§ 5. Циркуляция векторного поля
Мы хотим теперь рассмотреть ротор поля примерно так же, как рассматривали дивергенцию. Мы вывели теорему Гаусса, вычисляя интеграл по поверхности, хотя с самого начала отнюдь не было ясно, что мы будем иметь дело с дивергенцией. Откуда же можно было знать, что для ее получения надо интегрировать по поверхности? Этот результат вовсе не был очевиден. И столь же неоправданно мы сейчас вычислим другую характеристику поля и покажем, что она связана с ротором. На этот раз мы подсчитаем так называемую циркуляцию векторного поля. Если С — произвольное векторное поле, мы возьмем его составляющую вдоль кривой линии и проинтегрируем эту составляющую по замкнутому контуру. Интеграл называется циркуляцией векторного поля по контуру. Мы уже раньше в этой главе рассматривали криволинейный интеграл от Сy. Сейчас мы то же самое проделываем с произвольным векторным полем С.
Пусть Г — произвольный замкнутый контур в пространстве (воображаемый, разумеется). Пример мы видим на фиг. 3.7. Криволинейный интеграл от касательной составляющей С по контуру записывается в виде
(3.30)
Фиг. 3.7. Циркуляция вектора С но кривой Г есть криволинейный интеграл от С t (касательной составляющей С).
Фиг. 3.8. Циркуляция по всему контуру есть сумма циркуляции по двум контурам: Г 1 =Г a +Г ab и Г 2 =Г ь +Г a Ь .
Заметьте, что интеграл берется по всему замкнутому пути, а не от одной точки до другой, как это делалось раньше. Кружочек на знаке интеграла должен нам напоминать об этом. Такой интеграл называется циркуляцией векторного поля по кривой Г. Название связано с тем, что первоначально так рассчитывали циркуляцию жидкости. Но название это, как и поток, было распространено на любые поля, даже такие, в которых «циркулировать» нечему.
Забавляясь той же игрой, как с потоком, мы можем показать, что циркуляция вдоль контура есть сумма циркуляции вдоль двух меньших контуров. Положим, что, соединив две точки (1) и (2) первоначальной кривой с помощью некоторой линии, мы разбили кривую на два контура Г 1и Г 2(фиг. 3.8). Контур Г 1состоит из Г a— части первоначальной кривой слева от (1) и (2) и «соединения» Г ab . Контур Г 2состоит из остатка первоначальной кривой плюс то же соединение.
Циркуляция вдоль Г 1есть сумма интеграла вдоль Г аи вдоль Г аЬ. Точно так же и циркуляция вдоль Г 2есть сумма двух частей, одной вдоль Г b, другой — вдоль Г ab. Интеграл вдоль Г ab для кривой Г 2имеет знак, противоположный тому знаку, который он имел для кривой Г 1 , потому что направления обхода противоположны (в обоих криволинейных интегралах направления поворота нужно брать одни и те же).
Повторяя прежние аргументы, мы можем убедиться, что сумма двух циркуляции даст как раз криволинейный интеграл вдоль первоначальной кривой Г. Интегралы по Г abсократятся. Циркуляция по одной части плюс циркуляция вдоль другой равняется циркуляции вдоль внешней линии. Этот процесс разрезания большого контура на меньшие можно продолжить. При сложении циркуляции по меньшим контурам смежные части будут сокращаться, так что сумма их сведется к циркуляции вдоль единственного первоначального контура.
Теперь предположим, что первоначальный контур — это граница некоторой поверхности. Существует бесконечное множество поверхностей, границей которых служит все тот же первоначальный замкнутый контур. Наши результаты не зависят, однако, от выбора этих поверхностей. Сперва мы разобьем наш первоначальный контур на множество малых контуров, лежащих на выбранной поверхности (фиг. 3.9).
Фиг. 3.9. Некоторая поверхность, ограниченная контуром Г.
Поверхность разделена на множество маленьких участков, каждый примерно в форме квадрата. Циркуляция по Г есть сумма циркуляции по всем маленьким контурам.
Какой бы ни была форма поверхности, но если малые контуры сделать достаточно малыми, всегда можно будет считать каждый из них замыкающим достаточно плоскую поверхность. Кроме того, каждый из них можно сделать очень похожим на квадрат. И циркуляцию вокруг большого контура Г можно найти, подсчитав циркуляции по всем квадратикам и сложив их.
§ 6. Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он расположен в одной из координатных плоскостей), то расчет сделать легко. Так как пока мы не делали никаких предположений об ориентации осей координат, мы вправе выбрать их так, чтобы тот квадратик, на котором мы сосредоточили свое внимание, оказался в плоскости ху (фиг. 3.10). Если результат расчета будет выражен в векторной записи, то можно говорить, что он не зависит от специальной ориентации плоскости.
Фиг. 3.10. Вычисление циркуляции вектора С по маленькому квадратику.
Мы хотим теперь найти циркуляцию поля С по нашему квадратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор С на протяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадратиках.) Отправившись от точки (х, у) — в левом нижнем углу фигуры,— мы обойдем весь квадрат в направлении, указанном стрелками. Вдоль первой стороны, отмеченной цифрой 1, касательная составляющая равна С х (1),а расстояние равно Dx. Первая часть интеграла равна C x(1) Dx, Вдоль второй стороны получится С у(2) Dy. Вдоль третьей мы получим -С x(3) Dx, а вдоль четвертой -C y(4) Dy. Знаки минус стоят потому, что нас интересует касательная составляющая в направлении обхода. Весь криволинейный интеграл тогда равен
Читать дальшеИнтервал:
Закладка: