Ричард Фейнман - 5. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5. Электричество и магнетизм - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    5. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 5. Электричество и магнетизм краткое содержание

5. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.14)

а для потока из V 2:

315 Заметьте что во втором интеграле мы обозначили внешнюю нормаль к S - фото 94

(3.15)

Заметьте что во втором интеграле мы обозначили внешнюю нормаль к S abбуквой n - фото 95

Заметьте, что во втором интеграле мы обозначили внешнюю нормаль к S abбуквой n 1, если она относится к S 1 , и буквой n 2, если она относится к S 1 (см. фиг. 3.4).

Фиг. 3.4. Объем V, заключенный внутри поверхности S, делится на две части «сече­нием» (поверхностью S ab ). Получается объем V 1 , окруженный поверхностью S 1 = S a +S ab , и объем V 2 , окруженный поверхностью S 2 = S b +S ab .

Ясно, что n 1=-n 2, и тем

самым 316 Складывая теперь уравнения 314 и 315 мы убеждаемся что - фото 96

самым

(3.16)

Складывая теперь уравнения (3.14) и (3.15), мы убеждаемся, что сумма потоков сквозь S 1 и S 2 как раз равна сумме двух ин­тегралов, которые, взятые вместе, дают поток через перво­начальную поверхность S=S a +S b .

Мы видим, что поток через всю внешнюю поверхность S можно рассматривать как сумму потоков из тех двух частей, на которые разрезан объем. Эти части можно еще разрезать: скажем, V 1 разбить пополам. Опять придется прибегнуть к тем же доводам. Так что для любого способа разбиения первоначаль­ного объема всегда остается справедливым то свойство, что по­ток через внешнюю поверхность (первоначальный интеграл) равен сумме потоков изо всех внутренних частей.

§ 3. Поток из куба; теорема Гаусса

Рассмотрим теперь частный случай потока из маленького ку­бика и получим интересную формулу. Ребра куба пусть нап­равлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, суть х, у, z, ребро куба в направлении х равно Dx, ребро куба (а точнее, бруска) в направлении у равно Dy, а в направлении z равно Dz. Мы хотим найти поток вектор­ного поля С через поверхность куба. Для этого вычислим сумму потоков через все шесть граней. Начнем с грани 1 (см. фиг. 3.5).

Поток наружу сквозь нее равен x-компоненте С с минусом, проинтегрированной по площади грани. Он равен

5 Электричество и магнетизм - изображение 97

Так как куб считается малым, этот интеграл можно заменить значением С хв центре грани 1 эту точку мы обозначили (1), умноженным на площадь грани DyDz:

Поток сквозь 1 наружу=-C x(1)DyDz.

Подобным же образом поток наружу через грань 2 равен

Поток сквозь 2 наружу= C x(2) DyDz.

Фиг 35 Вычисление потока вектора С из маленького кубика Величины C x - фото 98

Фиг. 3.5. Вычисление потока вектора С из маленького кубика.

Величины C x 1 и С х 2 вообще говоря слегка отличаются Если Dx - фото 99

Величины C x (1) и С х (2), вообще говоря, слегка отличаются. Ес­ли Dx достаточно мало, то можно написать

Существуют конечно и другие члены но в них входит Dx 2и высшие степени Dx - фото 100

Существуют, конечно, и другие члены, но в них входит (Dx) 2и высшие степени Dx, и в пределе малых Dx ими запросто можно пренебречь. Значит, поток сквозь грань 2 равен

Складывая потоки через грани 1 и 2 получаем Производную нужно вычислять в - фото 101

Складывая потоки через грани 1 и 2, получаем

Производную нужно вычислять в центре грани 1, т. е. в точке [x,y+(Dy/2), z+(Dz/2)]. Но если куб очень маленький, мы сде­лаем пренебрежимую ошибку, если вычислим ее в вершине (х, у, z).

Повторяя те же рассуждения с каждой парой граней, мы получаем

а А общий поток через все грани равен сумме этих членов Мы обнаруживаем - фото 102

а А общий поток через все грани равен сумме этих членов Мы обнаруживаем - фото 103

а

А общий поток через все грани равен сумме этих членов Мы обнаруживаем что - фото 104

А общий поток через все грани равен сумме этих членов. Мы обнаруживаем, что

Сумма производных в скобках как раз есть С·С, a DxDyDz=DV (объем куба). Таким образом, мы можем утверждать, что для бесконечно малого куба

317 Мы показали что поток наружу с поверхности бесконечно малого куба - фото 105

(3.17)

Мы показали, что поток наружу с поверхности бесконечно ма­лого куба равен произведению дивергенции вектора на объем куба. Теперь мы понимаем «смысл» понятия дивергенции век­тора. Дивергенция вектора в точке Р — это поток С («исте­чение» С наружу) на единицу объема, взятого в окрестности Р. Мы связали дивергенцию С с потоком С из бесконечно малого объема. Для любого конечного объема можно теперь использовать факт, доказанный выше, что суммарный поток из объема есть сумма потоков из отдельных его частей. Иначе говоря, мы можем проинтегрировать дивергенцию по всему объему. Это приводит нас к теореме, согласно которой интеграл от нормальной составляющей произвольного вектора по замк­нутой поверхности может быть представлен также в виде ин­теграла от дивергенции вектора по объему, заключенному внутри поверхности. Теорему эту называют теоремой Гаусса.

ТЕОРЕМА ГАУССА 318 где S произвольная замкнутая поверхность V объем - фото 106

ТЕОРЕМА ГАУССА

(3.18)

где S — произвольная замкнутая поверхность, V — объем внутри нее.

§ 4, Теплопроводность; уравнение диффузии

Чтобы привыкнуть к теореме, разберем на примере, как ее применяют. Обратимся опять к распространению тепла, скажем в металле, рассмотрим совсем простой случай: все тепло было подведено к телу заранее, а теперь тело остывает. Источников теп­ла нет, так что количество тепла сохраняется. Сколько же тогда тепла должно оказаться внутри некоего определенного объема в какой-то момент времени? Оно должно уменьшаться как раз на то количество, которое уходит с поверхности объема. Если этот объем — маленький кубик, то,

следуя формуле 317 можно написать 319 Но это должно быть равно скорости - фото 107

следуя формуле (3.17), мож­но написать

(3.19)

Но это должно быть равно скорости потери тепла внутренностью куба. Если q — количество тепла в единице объема, то весь

запас тепла в кубе qDV, а скорость потерь равна

5 Электричество и магнетизм - изображение 108

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5. Электричество и магнетизм отзывы


Отзывы читателей о книге 5. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x