Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Необходимо обращать внимание и на разницу, вносимую географией, ибо с изменением положения на Земле некоторые характеристики могут тоже меняться. Если мы в каком-то ме­сте измеряем магнитное поле, а затем вместе со всей аппарату­рой переедем куда-то в другое место, то приборы могут и не ра­ботать точно таким же образом, как раньше, поскольку магнит­ное поле в этих различных районах может быть разным. Однако всю ответственность за разницу в этом случае мы можем свалить на магнитное поле Земли. Но если вообразить, что мы передви­гаем аппаратуру вместе со всем земным шаром, то, разумеется, никакой разницы быть не должно.

Другое свойство, которое мы тоже подробно обсуждали,— это вращение в пространстве. Если мы повернем нашу аппаратуру на некоторый угол, то она будет работать точно так же, как и прежде, но, разумеется, при непременном условии, что вместе с ней мы повернем все существенное для работы аппаратуры окружение. Проблеме симметрии при вращении в пространстве была посвящена глава 11. Там вы познакомились и с векторным анализом — математическим аппаратом, который наиболее пол­но и изящно учитывает вращательную симметрию.

Поднявшись в изучении природы на ступеньку выше, мы познакомились с более сложной симметрией — симметрией при равномерном и прямолинейном движении. Это поистине замечательная вещь. Если мы погрузим нашу работающую уста­новку на автомашину (со всем, конечно, существенным окруже­нием) и поедем с постоянной скоростью по прямой дороге, то явления, происходящие в движущейся машине, будут протекать точно так же, как если бы она стояла на месте, т. е. все законы физики остаются теми же самыми.

Нам даже известно, как математически выражается эта сим­метрия: все математические уравнения должны оставаться неиз­менными при преобразованиях Лоренца. Кстати, именно изучение проблем теории относительности заострило внимание физи­ков на симметриях физических законов.

Однако все упомянутые виды симметрии имеют геометриче­скую природу, причем в некотором смысле утверждается экви­валентность пространства и времени. Но существуют симмет­рии совершенно другого рода. Например, можно заменить один атом другим атомом того же сорта, или (в несколько другой постановке) существуют атомы одного и того же сорта, т. е. существуют такие группы атомов, что если мы переставим любые два из них, то ничто не изменится. То, что может сделать один атом кислорода определенного сорта, способен сделать и второй.

«Ерунда какая-то,— может возразить какой-нибудь скеп­тик,— ведь это же просто определение того, что означают атомы одного и того же сорта!» Согласен, это может быть просто определением, но все дело в том, что до опыта нам не известно, существуют ли в природе атомы «одного и того же сорта», а экспериментальный факт состоит в том, что таких атомов много, очень много, так что наше утверждение все-таки что-то означает. В указанном смысле одинаковы и так называемые элементарные частицы, из которых сделаны атомы; одинаковы все протоны, одинаковы все положительные p-мезоны и т. д.

После столь длинного списка того, что можно делать, не из­меняя при этом явлений, может создаться впечатление, что прак­тически позволено делать все что угодно. Совсем нет. Вот вам пример — просто для того, чтобы продемонстрировать разницу. Допустим, что нас интересует вопрос: «А не остаются ли законы физики теми же самыми при изменении масштаба?» Пусть вы построили какую-то машину, а затем построили точ­ную ее копию, но увеличенную, скажем, в пять раз. Будет ли копия работать точно так же? Нет, не будет! Длина волны света, испускаемого, например, атомами кальция, находящимися внутри ящика, и длина волны, излученная газом атомов каль­ция, которых в пять раз больше, будет не в пять раз больше, а в точности той же самой. Так что изменится отношение длины волны к размеру излучателя.

Возьмем другой пример. Время от времени в газетах вы видите фотографии моделей знаменитых соборов, сделанные из спичек, — удивительное произведение искусства, более уди­вительное и потрясающее, чем настоящий собор. А представьте себе, что такой деревянный собор в самом деле построен в на­туральную величину. Вы уже чувствуете, что из этого получится! Он не будет стоять, он рухнет, ибо такие увеличенные модели из «спичек» недостаточно прочны. «Правильно,— может ска­зать кто-нибудь из вас, —но ведь существует внешнее влияние, которое тоже необходимо изменить в соответствующей пропор­ции!» Вы имеете в виду способность предметов противостоять силе тяжести? Хорошо. Сначала, когда мы взяли модель собора, сделанного из настоящих спичек, и настоящую Землю, то все было отлично и устойчиво. Но потом, когда мы увеличили собор, то должны увеличить и Землю, а это для собора будет еще хуже: ведь сила тяжести станет еще больше!

Сейчас вы, конечно, понимаете, что в основе зависимости явлений от размеров лежит атомная природа строения вещества. Если бы нам удалось построить аппаратуру, которая была бы так мала, что содержала бы всего пять атомов, то такую штуку нельзя было бы произвольно уменьшить или увеличить. Ведь размер отдельного атома не произвольный, он совершенно опре­деленный.

Тот факт, что законы физики не остаются теми же при из­менении масштаба, открыл еще Галилей. Он понял, что проч­ность материалов изменяется не в прямой пропорции с их раз­мерами, и иллюстрировал это свойство на примере, очень похо­жем на наш собор из спичек. Он рисовал два скелета собаки, один из них обычный, в той пропорции, которая необходима для поддержания ее веса, а второй — необходимый для некой вооб­ражаемой «суперсобаки», которая в десять или, может быть, в тысячу раз больше обычной. Получилось нечто громадное и внушительное с совершенно другими пропорциями. Не извест­но, привели ли Галилея эти соображения к заключению о том, что законы природы должны иметь определенный масштаб; ясно лишь одно, что он был настолько потрясен своим открытием, что счел его столь же важным, как и открытие законов дви­жения. Именно поэтому Галилей опубликовал оба эти зако­на в одном и том же томе под заглавием «О двух Новых Науках».

Другой хорошо известный пример несимметрии законов — это вращение. В системе, вращающейся с постоянной угловой скоростью, законы физики будут выглядеть совсем иначе, чем в покоящейся. Если мы произведем какой-то опыт, а затем по­грузим всю аппаратуру в космический корабль и заставим его вращаться в межпланетном пространстве с постоянной угловой скоростью, то аппаратура из-за наличия центробежных и кориолисовых сил уже не будет работать так, как раньше. В сущ­ности, ведь о вращении Земли мы узнаем, наблюдая лишь за поведением маятника (так называемого «маятника Фуко»). Нам вовсе не нужно для этого «выглядывать наружу», т. е. смотреть на звезды, например.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x