Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 447 Машина В заставляет работать обратимую машину А в обратном - фото 91

Фиг. 44.7. Машина В застав­ляет работать обратимую ма­шину А в обратном направлении.

Обладая работой W, можно запустить машину А в обратном направлении, ведь это — обратимая машина. При этом она поглотит какое-то количество тепла из резервуара с температурой Т 2 , но зато вернет тепло Q 1 резервуару при темпе­ратуре Т 1 . Каков чистый результат этого двойного цикла? Мы вернули все к исходному состоянию и совершили дополнитель­ную работу W'-W. Дело свелось к тому, что мы извлекли энергию из резервуара с температурой Т 2 ! Тепло Q 1 , взятое из резервуара с температурой T 1 , было аккуратно возвращено. Раз это тепло все равно возвращается, то в качестве резервуара с температурой Т 1 можно взять что-нибудь поменьше океана и заключить это устройство внутрь составной машины А+В. Чистым результатом цикла такой машины будет изъятие из резервуара при температуре Т 2 тепла W'-W и превращение его в работу. Но извлечение полезной работы из резервуара при неизменной температуре без других изменений запрещается постулатом Карно. Этого нельзя сделать. Таким образом, не существует таких машин, которые извлекли бы некоторое количество тепла из резервуара при температуре Т 1 , возвратили бы какую-то его часть при температуре Т 2 и совершили боль­шую работу, чем обратимая машина, работающая при тех же самых температурных условиях.

Предположим теперь, что машина В тоже обратима. Тогда, конечно, не только W' не больше W, но и W не больше W'. Чтобы доказать это, надо просто обратить предыдущие аргу­менты. Итак, если обе машины обратимы, то они должны производить одинаковую работу, и мы пришли к блестящему выводу Карно: если машина обратима, то безразлично, как она умудряется превращать тепло в работу. Произведенная машиной работа, если только машина поглощает определенное количество тепла при температуре Т 1 и возвращает какую-то его часть при температуре Т 2 , не зависит от устройства ма­шины. Так уж устроен мир, и от частных свойств машины это не зависит.

Если бы мы нашли закон, определяющий работу, со­вершаемую при изъятии тепла Q 1 при температуре Т 1 и возвращении части этого тепла при температуре T 2, то эта величина была бы универсальной постоянной, не зависящей от свойств вещества. Конечно, если нам известны свойства какого-нибудь вещества, мы можем вычислить интересующую нас величину. После этого мы будем вправе заявить, что все остальные вещества, если с их помощью построить обратимую машину, произведут точно такую же работу. Такова основная идея, ключ, с помощью которого мы можем найти последующие соотношения. Например, мы хотим узнать, насколько резина сжимается при нагревании и насколько она остывает, когда мы позволяем ей сжаться. Предположим, что мы взяли резину в качестве рабочего вещества обратимой машины и совершили обратимый цикл. Чистый результат, полная произведенная работа,— это универсальная функция, великая функция, не зависящая от свойств вещества. Таким образом, мы убежда­емся, что есть нечто, ограничивающее в известном роде разно­образие свойств вещества. Мы не можем сделать эти свойства какими захотим, не можем изобрести вещество, которое, будучи использованным в тепловой машине, произвело бы за обратимый цикл работу больше допустимой. Этот принцип, это ограни­чение,— единственное реальное правило, которое можно вы­вести из термодинамики.

§ 4. Коэффициент полезного действия идеальной машины

А сейчас попробуем найти закон, определяющий работу W как функцию Q 1, Т 1 и Т 2 . Ясно, что W пропорционально Q 1 , ибо если две обратимые машины работают в параллель, то такая сдвоенная машина тоже будет обратимой машиной. Если каждая из этих машин поглощает тепло Q 1 , то обе сразу поглощают 2Q 1, а работа, которую они совершают, равна 2 W и т. д. Поэтому пропорциональность W затраченному теплу Q 1вполне естественна.

После этого сделаем еще один важный шаг к универсальному закону. В качестве рабочего вещества машины можно взять одно вещество с хорошо известными нам свойствами. Восполь­зуемся этим и выберем идеальный газ. Можно и не делать этого, а вывести интересующее нас правило чисто логически, совсем не используя для этого какого-то вещества. Это одно из самых блестящих теоретических доказательств в физике, но пока мы используем менее абстрактный и более простой метод прямого вычисления.

Нам нужно лишь получить формулы для Q 1 и Q 2(ведь W=Q 1 -Q 2 ) — тепла, которым машина обменивается с резерву­арами во время изотермического расширения и сжатия. Для примера вычислим Q 1 тепло, полученное от резервуара при температуре T 1во время изотермического расширения (кривая 1 на фиг. 44.6) от точки а, где давление равно p a , объем V a , тем­пература Т 1 , до точки b, где давление равно р b , объем V b , а тем­пература та же самая T 1 . Энергия каждой молекулы идеального газа зависит только от температуры, а поскольку в точках а и b одинаковы и температура, и число молекул, то и внутренняя энергия тоже одинакова. Энергия U не изменяется; полная рабо­та газа в период расширения

W= a b ∫pdV

а

совершается за счет энергии Q 1 , полученной из резервуара. Во время расширения pV=NkT 1 или

p-NkT 1/V; значит,

т е Q 1 NkT 1 lnV b V a Вот то тепло которое взято из резервуара при - фото 92

т. е.

Q 1 =NkT 1 ln(V b /V a ).

Вот то тепло, которое взято из резервуара при температуре Т 1 . Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T 2 :

Q 2 =NkT 2 ln(V c /V d ). (44.5)

Чтобы закончить анализ, нужно еще найти соотношение между V c /V d и V b /V a . Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pV g остается постоянным. Поскольку pV=NkT, то фор­мулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)V g -1=const, или TV g -1=const, т. е.

T 1V b g -1=T 2V c g -1. (44.6)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x