Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И тут выступает единство явлений во Вселенной. Движение атомов далекой звезды даже на огромных расстояниях возбуж­дает электроны нашего глаза, и мы узнаем о звездах. Если бы закона воздействия полей не существовало, мы бы буквально ничего не знали о внешнем мире! А электрические бури в га­лактике, удаленной от нас на пять миллиардов световых лет (самой далекой из обнаруженных до сих пор), еще способны возбуждать токи в гигантской «чаше» радиотелескопа. Вот по­чему мы видим и звезды, и галактики.

Об этих замечательных явлениях и пойдет речь в настоящей главе. В самом начале нашего курса лекций мы обрисовали об­щую картину мира, но теперь мы более подготовлены к тому, чтобы понять ее глубже. Поэтому вернемся снова к общей кар­тине явлений и поговорим о ней более подробно. Начнем мы с описания положения, которое физика занимала в конце XIX столетия. Все, что тогда было известно об основных закономер­ностях, можно сформулировать так.

Во-первых, была известна сила тяготения (мы ее записыва­ли неоднократно). Сила, действующая на тело с массой m со стороны тела массы М, дается выражением

3 Излучение Волны Кванты - изображение 41(28.1)

где e r— единичный вектор, направленный от m к М, а r — рас­стояние между телами.

Во-вторых, к концу XIX века был известен такой закон электричества и магнетизма: сила, действующая на заряд q, характеризуется двумя полями Е и В и скоростью заряда v:

F=q(E+vXB). (28.2)

К этому нужно добавить формулы для Е и В. Для совокупности заряженных частиц поля Е и В представляются как суммы вкладов от каждой частицы в отдельности. Таким образом, опре­делив Е и В для одного заряда и сложив вклады от всех зарядов во Вселенной, мы получим полную величину Е и В! В этом и со­стоит принцип суперпозиции.

Как теперь получить формулу для электрического и магнит­ного поля одного заряда? Оказывается, это очень сложно; пона­добится затратить много труда и использовать тонкие доказа­тельства. Но не в этом дело. Мы написали законы, собственно, чтобы подчеркнуть красоту природы, показать, что все основные законы можно уместить на одной странице (с обозначениями чи­татель уже знаком). Точная и вполне строгая формула для поля, создаваемого отдельным зарядом, насколько мы знаем, имеет очень сложный вид (мы отвлекаемся от эффектов кванто­вой механики). Поэтому мы не будем выводить ее подробно, а запишем сразу, как она выглядит. На самом деле правильнее было бы записать законы электричества и магнетизма с помо­щью уравнений поля, о которых будет сказано позднее. Но там используются совсем иные понятия и обозначения, поэтому давайте сейчас напишем выражения для поля в уже знакомой нам форме, хотя она и не очень удобна для вычислений.

Электрическое поле Е дается выражением

283 Что означают отдельные члены в этом выражении Возьмем первый из них - фото 42(28.3)

Что означают отдельные члены в этом выражении? Возьмем первый из них,

Е=-qe r ’/4pe 0r' 2. Это уже знакомый нам закон Кулона; здесь q — заряд, создающий поле, e r '- единичный вектор, направленный от точки Р, где измеряется поле Е, r — расстояние от Р до q. Но закон Кулона неточен. Открытия, сделанные в XIX веке, показали, что любое воздействие не мо­жет распространяться быстрее некоторой фундаментальной скорости с, называемой теперь скоростью света. Поэтому опре­делить положение заряда в настоящий момент времени не­возможно. Кроме того, на поле в данный момент времени может влиять только поведение заряда в прошлом. А как давно в прош­лом? Задержка во времени, или так называемое время запаздыва­ния, есть время, необходимое для прохождения расстояния от заряда до точки измерения поля Р со скоростью света с. Время запаздывания равно r'/с. Таким образом, первый член в (28.3) представляет собой не обычный, а запаздывающий закон Кулона.

Чтобы учесть запаздывание, мы поставили штрих у r, по­нимая под r' то расстояние, на которое в начальный момент сво­его воздействия был удален заряд q от точки Р. Представим на минуту, что заряд несет с собой световые сигналы, которые дви­жутся к точке Р со скоростью c. Тогда, глядя на заряд q, мы увидели бы его не в том месте, где он находится сейчас, а там, где он был некоторое время назад. В нашу формулу входит кажущееся направление e r ', так называемое запаздывающее направление, и запаздывающее расстояние r'. Это легко понять, но это еще не все. Дело, оказывается, еще гораздо сложнее.

В выражении (28.3) имеется и ряд других членов. Вторым членом природа как бы учитывает запаздывание в первом гру­бом приближении. Это поправка к запаздывающему кулоновскому члену; она представляет собой произведение скорости из­менения кулоновского поля и времени запаздывания. Но и это не все. Есть еще третий член — вторая производная по t единич­ного вектора, направленного к заряду. Этим исчерпывается фор­мула; мы учли все вклады в электрическое поле от произвольно движущегося заряда.

Магнитное поле выражается следующим образом:

284 Все предыдущее мы написали чтобы показать красоту природы и в - фото 43(28.4)

Все предыдущее мы написали, чтобы показать красоту природы и, в некотором смысле, могущество математики. Говоря от­кровенно, мы даже не пытаемся понять, почему столь значитель­ные по содержанию формулы занимают так мало места, ведь в них содержится и принцип действия генераторов тока, и особенности поведения света — словом, все явления электричества и магнетизма. Конечно, для полноты картины нужно добавить еще кое-что о свойствах использованных материалов (свойствах вещества), которые пока не учтены в (28.3).

Заканчивая краткое описание представлений о мире в XIX веке, следует упомянуть еще об одном фундаментальном обоб­щении, к которому в большой степени причастен и Максвелл, а именно о единстве явлений механики и теплоты. Мы будем гово­рить об этом в ближайшем будущем.

В XX столетии обнаружили, что все законы динамики Нью­тона неправильны, и чтобы уточнить их, воспользовались кван­товой механикой. (Законы Ньютона справедливы для тел дос­таточно больших размеров.) Совсем недавно законы квантовой механики в совокупности с законами электромагнетизма по­служили основой для открытия законов квантовой электродина­мики. Кроме того, был открыт ряд новых явлений, и раньше других — явление радиоактивности, открытое Беккерелем в 1898 г. (он похитил его из-под самого носа у XX столетия). Явление радиоактивности послужило началом развития науки о ядрах, новых частицах и о взаимодействиях совсем другого ро­да — не гравитационных и не электрических. Все эти вопросы еще ждут своего разрешения.

Для уж очень строгих и образованных читателей (скажем, профессоров, которым случится читать эти строки) специально добавим: наше утверждение, что выражение (28.3) содержит все известное из электродинамики, не совсем точно. Существует во­прос, который так и не был разрешен к концу XIX столетия. Если попробовать вычислить поле, создаваемое всеми зарядами, включая и тот заряд, на который в свою очередь действует поле, то возникнут трудности при попытке определить, например, расстояние от заряда до него самого и последующей подстановке этой величины, равной нулю, в знаменатель. Как быть с той частью поля, которая создается зарядом и на него же действует, до сих пор не понятно. Оставим этот вопрос, загадка не раз­гадана до конца, и мы по возможности будем избегать го­ворить о ней.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x