Терри Пратчетт - Наука Плоского Мира
- Название:Наука Плоского Мира
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Терри Пратчетт - Наука Плоского Мира краткое содержание
Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.
Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников. Стоит вам один раз взглянуть на наш мир с точки зрения Плоского Мира, и он уже никогда не останется для вас прежним.
Наука Плоского Мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
У больших пушек есть свои недостатки — например, пассажиры рискуют быть размазанными по полу из-за высокого ускорения. Современная техника позволяет избежать этого за счет плавного увеличения скорости. На данный момент ракеты являются более предпочтительным вариантом с инженерной точки зрения, но это может и измениться. В 1926 году Роберт Годдард изобрел ракету на жидком топливе. Первая из таких ракет поднялась на головокружительную высоту в 40 футов (12,5 м). С тех пор ракеты сильно изменились — они смогли доставить человека на Луну и различное оборудование на границу Солнечной системы. И они стали намного лучше. Тем не менее, попытка покинуть планету на гигантском одноразовом фейерверке выглядит… не слишком изящным решением.
До недавнего времени считалось, что энергия, необходимая для преодоления Земного притяжения, должна находиться на самом космическом корабле. Однако уже сейчас у нас есть технология, в потенциале позволяющая осуществить взлет с источником энергии, неподвижно покоящимся на земле. Это принцип лазерной тяги, который состоит в том, что мощный пучок когерентного света, направленный на объект, способен привести его в движение. Такой двигатель требует немалых затрат энергии, однако прототипы, построенные Леиком Мирабо, уже были протестированы в комплексе для испытания высокоэнергетических лазерных систем вблизи Уайт-Сэнд [138] White Sands (букв. «белые пески») — регион в штате Нью-Мексико, вблизи которого находится одноименный ракетный полигон — прим. пер.
. В ноябре 1997 года небольшой снаряд достиг высоты в 50 футов (15 м) за 5,5 секунд; в декабре этот результат был улучшен до 60 футов (20 м) за 4,9 секунд. Возможно эти результаты и не кажутся впечатляющими, но попробуйте сравнить их с первой ракетой Годдарда. Для запуска ракета приводится во вращение со скоростью 6000 оборотов в минуту, чтобы обеспечить гироскопическую устойчивость. Затем в полость специальной формы направляется лазерный луч с частотой 20 импульсов в секунду — это приводит к нагреванию воздуха под ракетой и создает волну сжатия с давлением в несколько тысяч атмосфер и температурой до 30 000 °K. Эта волна и приводит ракету в движение. На большей высоте воздух становится слишком разреженным, поэтому аналогичная ракета потребует взять на борт некоторое количество топлива. Лазер мощностью в 1 мегаватт может поднять на орбиту груз массой 2 фунта (1 кг).
А еще это очень мощное оружие…
Еще один возможный вариант — это направленная передача энергии. Электромагнитную энергию в виде пучка микроволнового излучения вполне можно передавать напрямую с земли. Это не выдумка: в 1975 году Дик Дикинсон и Уилям Браун осуществили передачу пучка мощностью 30кВт (достаточной для питания тридцати электрических плит) на расстояние в одну милю. Джеймс Бенфорд и Мирабо предложили использовать для запуска космического корабля излучение с миллиметровой длиной волны, которое не затухает в атмосфере. Этот метод представляет собой одну из разновидностей лазерной тяги и реактивные снаряды аналогичной конструкции.
Оба этих метода требуют огромных затрат энергии. Это возвращает нас к базовому предположению, используемому в строительстве космических аппаратов и утверждающему, что подобные затраты неизбежны при любой попытке преодолеть притяжение Земли. Тем не менее, они дают некоторое преимущество, поскольку источник энергии находится прямо на поверхности планеты. К тому же электростанция мощностью в 1000 мегаватт, необходимая для поддержки лазерной тяги, в свободное от запусков время может генерировать электричество для национальной энергосети.
Более утонченное решение, предполагающее использование боласа, было впервые предложено в 1950-х годах. Традиционный болас — это охотничье оружие, состоящее из трех грузов, соединенных с ремнями, свободные концы которых связаны вместе. При броске болас приходит во вращение, растягивая грузы в разные стороны. Когда такой снаряд попадает в цель, грузы быстро закручиваются вокруг нее по спирали и наносят смертельный удар. Аналогичное устройство, похожее на гигантское колесо обозрения с тремя спицами можно расположить в вертикальной плоскости, расположенной над экватором. На конце каждой спицы будет находиться герметичная кабина. При этом нижняя часть такого боласа будет находиться где-то в нижних слоях атмосферы, а верхняя — в космическом пространстве. Подлетев к колесу на самолете, мы могли бы пересесть в ближайшую кабину, которая затем доставила бы нас наверх. Главным препятствием в строительстве такой машины является кабель, который по своей прочности должен превосходить все известные на сегодня материалы. Вероятным кандидатом является углеродное волокно, свойства которого постепенно приближаются к необходимой прочности и легкости. Вращение боласа будет постепенно замедляться из-за трения в атмосфере, однако потерю скорости можно будет компенсировать с помощью солнечных батарей, размещенных в космосе.
И все же наиболее известным устройством такого типа является космический лифт. В предыдущих главах мы уже касались этого вопроса, как в плане серьезной технической идеи, так и в качестве метафоры. Здесь мы бы хотели рассказать о нем более подробно. На первом этапе космический лифт представляет собой геостационарную орбиту. Далее остается только спустить на поверхность Земли кабель, и задача сводится к строительству соответствующей кабины и опять же выбору подходящего материала для кабеля. Для доставки материалов наверх можно использовать ракеты или целый каскад боласов (а протянув небольшой кабель, мы сможем использовать его, чтобы поднимать материалы для строительства более крупного).
В начале книги мы уже обращали внимание на то, что как только количество опускаемых и поднимаемых грузов уравновешивается, преодоление притяжения Земли, по сути, становится «бесплатным», т. е. не требует никаких затрат энергии. После этого можно строить межпланетный корабль прямо в космосе, используя сырье, добытое на Луне или в поясе астероидов. И в итоге космический лифт дает вам новое место для старта — именно поэтому мы и использовали его в качестве метафоры для описания таких процессов, как жизнь.
Идея космического лифта принадлежит русскому инженеру родом из Ленинграда Ю. Н. Арцутанову, который изложил ее в статье, опубликованной в газете «Комсомольская правда» 1960 года. Сооружение, которое он назвал «канатной дорогой на небо», по его расчетам могло бы поднимать на орбиту до 12 000 тонн в день. Западные ученые обратили внимание на эту идею, благодаря Джону Айзексу, Хью Бреднеру и Джорджу Бэкусу. Этих специалистов мало занимали полетами в космос, поскольку они были океанографами — единственными людьми, которые всерьез интересовались подвешиванием грузов на длинных канатах. За тем только исключением, что они хотели погружать канаты в океан, а не поднимать их в космическое пространство. Океанографы не были знакомы с более ранней работой Арцутанова, но вскоре его предвидение получило известность и на западе. В 1967 году космонавт-художник Алексей Леонов написал картину, изображающую космический лифт в действии.
Читать дальшеИнтервал:
Закладка: