Питер Годфри-Смит - Чужой разум. Осьминоги, море и глубинные истоки сознания
- Название:Чужой разум. Осьминоги, море и глубинные истоки сознания
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2020
- Город:Москва
- ISBN:978-5-17-113538-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Питер Годфри-Смит - Чужой разум. Осьминоги, море и глубинные истоки сознания краткое содержание
Чужой разум. Осьминоги, море и глубинные истоки сознания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В нашей линии появляется план строения хордовых — с нервной трубкой, проходящей вдоль спины, и мозгом на ее переднем конце. Этот план наблюдается у рыб, рептилий, птиц и млекопитающих. В другой линии — головоногих — возник иной план строения тела и иная разновидность нервной системы [72] См. Bernhard Budelmann, «The Cephalopod Nervous System: What Evolution Has Made of the Molluscan Design», в O. Breidbach and W. Kutsch, eds., The Nervous System of Invertebrates: An Evolutionary and Comparative Approach, 115–138 (Basel, Switzerland: Birkhäuser, 1995).
. Их нервная система более распределенная — менее централизованная, чем наша. Нейроны беспозвоночных, как правило, собраны во множественные ганглии , узелки, связанные друг с другом, сеть которых пронизывает все тело. Ганглии могут объединяться в пары, связанные нервами, которые проходят вдоль и поперек тела, словно параллели и меридианы. Такой тип нервной системы иногда именуют «лестничным», поскольку она напоминает лесенку, заключенную внутри тела. Предки головоногих, вероятно, обладали нервной системой подобного типа, так что когда в ходе эволюции количество их нейронов умножилось, то наращение происходило на этой базе.
В ходе этого наращения часть ганглиев выросла и усложнилась, и к ним прибавились новые. Нейроны сосредоточились в переднем конце животного, и из них стало формироваться что-то все больше и больше напоминавшее настоящий мозг. Старая лестничная схема была отчасти поглощена, но лишь отчасти, и основа строения нервной системы головоногих сохраняет глубокие отличия от нашей.
Самое странное в ней то, что пищевод — трубка, через которую пища, попадающая в рот, поступает внутрь тела, — проходит сквозь середину центрального мозга. Это кажется полной нелепостью — там мозгу явно делать нечего. Если осьминог проглотит что-то острое, способное проткнуть ему «глотку», то острый предмет попадает ему прямо в мозг. И таких пострадавших находили не раз.
Более того, основная часть нервной системы головоногого вообще располагается не в мозгу — она распределена по всему телу. У осьминога большинство нейронов находится непосредственно в щупальцах — их там вдвое больше, чем в центральном мозгу. У щупалец собственная система сенсоров и управления. Они обладают не только осязанием, но также восприимчивостью к химическим веществам — обонянием или вкусом. С каждой присоской на щупальце осьминога может быть связано до 10 000 нейронов, обрабатывающих вкусовую и осязательную информацию. Даже отрезанное щупальце может выполнять разнообразные базовые движения, например дотягиваться и хватать.
Как связаны между собой мозг осьминога и его щупальца? По старым исследованиям их поведения и анатомии создавалось впечатление, что щупальца достаточно независимы [73] Обзор см. Nixon and Young, The Brains and Lives of Cephalopods.
. Нервные тяжи, которые идут от щупалец к центральному мозгу, казались слишком тонкими. Иные опыты по изучению поведения создавали даже впечатление, что осьминоги не понимают, где их собственные щупальца. Как пишут Роджер Хэнлон и Джон Мессенджер в «Поведении головоногих», щупальца представлялись «курьезно изолированными» от мозга, по крайней мере в части управления основными движениями.
При этом внутренняя координация отдельного щупальца может быть весьма ловкой. Когда осьминог тянет к себе пищу, захват ее кончиком щупальца создает две волны мышечной активации: одна направлена от кончика внутрь, а вторая — от тела наружу [74] См. Tamar Flash and Binyamin Hochner, «Motor Primitives in Vertebrates and Invertebrates», Current Opinion in Neurobiology, 15, no. 6 (2005): 660–666.
. При встрече этих волн образуется сгиб — нечто вроде временного локтя. Кроме того, нервная система в каждом щупальце образует нейронные петли (по-научному возвратные связи ), которые, вероятно, сообщают щупальцу какую-то элементарную краткосрочную память, хотя пока неизвестно, как осьминог использует эту систему [75] См. Frank Grasso, «The Octopus with Two Brains: How Are Distributed and Central Representations Integrated in the Octopus Central Nervous System?» in Cephalopod Cognition, 94–122.
.
Иногда, впрочем, осьминог может «собраться в кучку», особенно когда это жизненно важно. Как мы убедились в начале этой главы, когда вы встречаетесь с осьминогом в дикой природе и останавливаетесь перед ним, представители как минимум некоторых видов вытягивают щупальце, изучая вас. Нередко за первым вытягивается второе, но поначалу всегда приходит в движение только одно, а взгляд животного следит за вами. Это предполагает некую преднамеренность, то, что действием руководит мозг. Ниже приведен кадр видеосъемки из Октополиса, который подкрепляет такое предположение. Один осьминог — в центре кадра — набрасывается на другого, справа, подняв одно щупальце, чтобы схватить противника.

Вероятно, тут действует какое-то сочетание локального и централизованного управления. Лучшая известная мне исследовательская работа на эту тему проведена в лаборатории Биньямина Хохнера в Еврейском университете Иерусалима. Статья 2011 года, написанная Хохнером в соавторстве с Тамар Гутник, Рут Берн и Майклом Кубой, описывала весьма изобретательный эксперимент [76] См. Tamar Gutnick, Ruth Byrne, Binyamin Hochner, and Michael Kuba, «Octopus vulgaris Uses Visual Information to Determine the Location of Its Arm», Current Biology, 21, no. 6 (2011): 460–462. В книге Сай Монтгомери «Душа осьминога» (Sy Montgomery, The Soul of an Octopus ) сообщается, что многие исследователи рассказывают байки о том, как осьминог, запущенный в незнакомый аквариум, куда также положили корм, путается в собственных щупальцах: одни щупальца пытаются направить животное к пище, другие как будто мечтают забиться в уголок. Я однажды наблюдал как раз такую ситуацию с осьминогом, помещенным в аквариум в сиднейской лаборатории. Животное как будто разрывалось между устремлениями щупалец, которые реагировали на ситуацию по-разному. Я не уверен, что этот случай показателен, особенно после того, как я сообразил, что свет в лаборатории был слишком яркий и, возможно, полностью дезориентировал осьминога.
. Они задались вопросом, способен ли осьминог научиться просовывать отдельное щупальце сквозь лабиринт, чтобы достать пищу. Задача была поставлена так, что собственные химические сенсоры на щупальце не помогли бы отыскать пищу: в определенной точке щупальце нужно было высунуть из воды, чтобы достичь цели. Но стенки лабиринта были прозрачными, так что было видно, где находится корм. В решении задачи с лабиринтом осьминогу приходилось руководствоваться зрением.
Осьминоги далеко не сразу обучились этому, но в конце концов практически все особи, участвовавшие в эксперименте, освоили решение. Зрение может руководить щупальцами. Однако в той же статье отмечалось, что, когда осьминоги справляются с заданием успешно, щупальце, находящее корм, как будто проводит по пути собственную рекогносцировку на местности — ползет и ощупывает лабиринт. Так что, похоже, две формы управления работают в тандеме: общее направление движения щупальца контролируется централизованно, с помощью зрения, тогда как тонкую настройку осуществляет само щупальце по ходу поиска.
Читать дальшеИнтервал:
Закладка: