Карл Андерсон - Аналитическая культура
- Название:Аналитическая культура
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Андерсон - Аналитическая культура краткое содержание
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.
Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Дэвенпорт и др. (Analysts at Work, с. 15) разделяют эту точку зрения:
По мере того как финансовая и инвестиционная области (а вместе с ними и все остальные отрасли) становятся всё более ориентированными на данные и аналитику, у топ-менеджеров просто не остается другого выхода, кроме как в той или иной степени овладеть навыками аналитической работы. В противном случае они просто не смогут отклонить рискованное предложение какого-нибудь брокера, подвергнув опасности свою компанию и клиентов.
Поддержал это мнение и Брайн д’Алессандро на конференции Strata+Hadoop World [193]:
Если вы линейный руководитель или топ-менеджер в компании, активно работающей с данными, и если у вас в команде есть специалисты по работе с данными, вы не обязаны знать, как строить прогнозные модели или пользоваться инструментами анализа данных, но определенный уровень компетентности в вопросах статистики у вас должен быть, потому что в один прекрасный день они придут к вам с презентацией в Power Point или отчетом, и именно вы окажетесь тем, кто должен будет критически оценить любой предоставленный анализ.
Итак, что же можно предпринять? Согласно недавнему докладу [194], «компании с управлением на основе данных более активно предлагают своим сотрудникам обучение и поддержку в реализации этого подхода на практике по сравнению с компаниями, где управление на основе данных не применяется (67 % против 53 %)». В своем выступлении на конференции Strata+Hadoop [195]в 2013 году Кен Рудин описал подход, применяющийся в компании Facebook, — data camp (лагерь по обучению работе с данными). Это две недели интенсивной работы с полным погружением в тему, причем принять участие могут не только аналитики, но и менеджеры проектов, дизайнеры, финансовые специалисты и специалисты по работе с клиентами. Отдельный лагерь проводится для технических специалистов. В первой половине дня участники лагеря в течение трех часов слушают лекции, часть из которых посвящена инструментам работы с данными Facebook. После обеда они работают над выбранными актуальными бизнес-проблемами. Работая на протяжении двух недель с наставником, они учатся исследовать данные, выдвигать гипотезы, задавать правильные бизнес-вопросы, повышают свою квалификацию в вопросах работы с данными. Вот что говорит Рудин:
Если мы продолжим наше начинание, а я думаю, что у нас все получится, то мы сформируем корпоративную культуру, где каждый будет понимать, что должен использовать данные как часть своей работы. Проводить анализ должен каждый [196].
Конечно, не каждая компания располагает ресурсами, персоналом и стремлением проводить такие программы. Но любая компания может с чего-то начать, к тому же сейчас доступно множество ресурсов. Бесплатные онлайн-курсы по статистике предлагают Coursera, Udacity, Khan Academy и многие другие. Есть отличная литература по теме. Мне нравится бесплатный открытый ресурс OpenIntro Statistics [197]. Однако выбирать литературу или набор обучающих материалов следует так, чтобы они соответствовали уровню аудитории. Главное, начать что-то делать и стимулировать сотрудников — не только из аналитического отдела — развивать навыки работы с данными и инструментами бизнес-аналитики, чтобы они чувствовали себя комфортно в этой теме.
Сначала цели
Алиса: Подскажите, пожалуйста, куда мне отсюда идти?
Чеширский кот: Это зависит от того, куда ты хочешь попасть.
Льюис Кэрролл. «Алиса в Стране чудес»В сфокусированной компании, независимо от того, осуществляется ли в ней управление на основе данных, есть четкое направление развития и известное всем представление, как должен расти бизнес. Задача руководителя — объединить людей вокруг этого в и дения и стимулировать их совместную работу для достижения общей цели. В компании с управлением на основе данных эта цель будет более прозрачной, с четко определенными показателями эффективности деятельности и другими связанными показателями, с ясными задачами и текущим положением дел. Эта система показателей должна быть доступна всем сотрудникам компании, чтобы каждый из них понимал, как его действия способствуют достижению главной цели.
Набор основных целей и показателей KPI затем будет спускаться на уровень бизнес-единиц, где в соответствии с ними могут вырабатываться показатели эффективности для этой конкретной бизнес-единицы, которые, в свою очередь, могут стать основой для разработки показателей и целей более низкого уровня. В какой-то момент вы дойдете до индивидуальных проектов, то есть примерных единиц «работы», требующих постановки конкретной цели и установления критериев успеха. При этом заранее определять критерии успеха следует не только при проведении A/B-тестирования ( глава 8), а в любом аналитическом проекте. При работе с данными всегда есть возможность вернуться и выбрать тот набор данных, который поддерживает нужное направление и в той или иной степени демонстрирует положительный показатель ROI. Именно поэтому в интересах объективности в компании с управлением на основе данных должна сложиться такая культура, где сначала формируют цели и показатели, и данные под них не подтягивают [198].
В случаях, когда решение по поводу следующего шага приходится принимать на основе нескольких переменных, причем некоторые из них отражают плюсы решения, а некоторые — минусы, постарайтесь определить относительный вес или ранжировать эти переменные до начала процесса сбора данных. То есть если в рамках подхода требуется построить матрицу взвешенного решения, постарайтесь как можно раньше оценить «удельный вес» всех факторов. Предположим, вам нужно выбрать одного поставщика услуги из нескольких, и вы руководствуетесь такими факторами, как цена, объем и качество. Скорее всего, цена и качество в данном случае образуют негативную корреляцию. После этого достаточно просто обосновать относительный вес факторов, в результате чего кто-то из поставщиков выбьется в лидеры. Благодаря определению относительной важности каждой из трех переменных до сбора данных, вы четко даете понять, что важно для компании, и снижаете возможность подтасовать результаты или выбрать только те данные, которые поддерживают нужное решение.
Задавайте вопросы
«У вас есть данные, подтверждающие это?» — никто не должен бояться задавать этот вопрос (и все должны быть готовы на него ответить).
Джули Арсенолт [199]В главе 8я высказал мнение, что когда в компании начинают активно применять тестирование и эксперименты, то фокус обсуждений смещается с мнений на гипотезы, которые могут подвергнуться объективной проверке. Поскольку это всего лишь гипотезы, а не демонстрация власти или опыта, кто угодно в компании может их высказывать. Это не означает, что каждый будет бросаться тестировать любую безумную идею, которая могла у него возникнуть. В расчет принимается множество факторов, таких как брендинг, юзабилити, стоимость разработки и риски. Тем не менее чем шире круг лиц, предлагающих идеи, тем разнообразнее набор этих идей. (Как вы помните, «хорошие идеи могут появиться у любого» и «дайте право голоса молодым специалистам».)
Читать дальшеИнтервал:
Закладка: