Карл Андерсон - Аналитическая культура
- Название:Аналитическая культура
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Андерсон - Аналитическая культура краткое содержание
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.
Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Помимо того, чтобы дать каждому право голоса, в компании с управлением на основе данных должна поощряться атмосфера здоровой любознательности . Нужно стимулировать конструктивные обсуждения, в ходе которых участники запрашивают дополнительную информацию, подвергают сомнениям предположения, обсуждают результаты тестирования или необходимость проведения дополнительных тестов. Презентации и анализы должны снабжаться ссылками на первоначальные данные. Честное и открытое обсуждение возможных проблем с опытным образцом или интерпретацией, а также предложение улучшений пойдет только на пользу развитию бизнеса. Главное, сохранять нейтральный тон обсуждения: мы обсуждаем данные, а не людей.
Наглядный пример подобного подхода — наука. Одна из основных задач классического западного обучения — сделать молодых ученых максимально объективными . Частью этой культуры стали активные попытки деперсонализировать их работу. Если раньше научные статьи писались в активном залоге, то примерно с 1920-х годов окончательно оформилась тенденция использовать пассивный залог [200]. Эта тенденция продолжается по сей день.
Конечно, читать статьи в пассивном залоге менее интересно, но это подчеркивает идею о том, что результаты касаются проводимого эксперимента или самих данных, а не людей, которые этот эксперимент проводят.
В компании с управлением на основе данных должно стимулироваться такое же объективное отношение. Если A/B-тестирование сайта показывает, что более крупная кнопка оформления и оплаты заказа не влияет на показатель выручки или коэффициент конверсии по сравнению с той маленькой кнопкой, которая есть сейчас, значит, так тому и быть. В этом никто не виноват. Это объективная реальность. Порадуйтесь, что вы получили новые ценные данные. (Вы можете использовать это свободное место на экране для чего-то другого.)
Майкл Немшофф высказался еще более определенно:
Поощряйте несогласие. Нет ничего плохого в том, чтобы поставить под сомнение сложившийся ход вещей, если это подкреплено данными. Не во всех компаниях топ-менеджмент позволяет высказывать необычные и отличающиеся предположения. Если приоритет для вас — создание компании с управлением на основе данных, то вы должны принять наличие определенного уровня несогласия. В некоторых случаях несогласие стоит даже награждать. С разрешения топ-менеджмента компании нужно учить сотрудников уходить с проторенных троп. Новые идеи — подтвержденные данными — отличная стартовая площадка для положительных инноваций [201].
Итерации и обучение
Ошибки — это порталы открытий.
Джеймс ДжойсВ предыдущей главе мы говорили о том, что недостаток подотчетности был назван одной из основных проблем в отношении людей, принимающих решения. Кто-то должен «вести счет», не только чтобы люди, принимающие решения, за них отвечали, но и чтобы у компании была возможность учиться и расти. Например, предпринимая определенные действия на перспективу, такие как построение прогнозных моделей, важно не забывать о петле обратной связи, в рамках которой вы проводите регулярный обзор результатов, изучаете отдельные случаи (так называемый анализ ошибок), выясняете, где вы могли бы действовать эффективнее.
Какое-то время я был специалистом по работе с данными в компании One Kings Lane — интернет-магазине по флеш-распродажам товаров для дома. Каждое утро мы предлагали пользователям 4 тыс. наименований товаров, 60 % из которых не выставлялись ранее. (Все эти предметы были в ограниченном количестве, и мы продавали их в течение трех дней или пока товар не закончится, в зависимости от того, что происходило быстрее.) Мы с коллегами строили наборы моделей, прогнозирующие, сколько товаров будет распродано к концу одного дня и к концу трех дней. У нас был дашборд, отражавший наши ошибки прогнозирования. Каждое утро мы проводили около часа, изучая и анализируя эти ошибки. Почему нам не удалось правильно спрогнозировать продажи этих ковриков? Действительно ли пользователи случайным образом выбирают между очень похожими товарами? Наша повседневная рутина превращалась в увлекательное занятие, частично потому, что мы относились к этому как к дружескому соревнованию. Мы обменивались идеями, начинали лучше понимать данные, и качество наших моделей неизменно росло. Причина была в постоянных итерациях и обратной связи, в непрерывном анализе пограничных случаев, в попытках их понять и улучшить общее качество.
То же верно и в отношении тестирования и экспериментов. Как уже говорилось в главе 8и главе 9, интуиция часто нас подводит. Более половины онлайн-экспериментов ни к чему не приводят. Однако это совсем не провал, если вы анализируете причины и учитесь на своих ошибках.
На рис. 10.2 показана общая петля обратной связи. Вы планируете и проводите эксперимент, измеряете результаты, анализируете данные, интерпретируете результаты, делаете выводы, строите гипотезы и планируете новый эксперимент. Достигаете верхней точки и вновь начинаете движение по кругу. Планирование эксперимента — условное название для этого этапа. С таким же успехом его можно назвать построением модели или разработкой PR-кампании. Суть в том, что компания с управлением на основе данных должна извлекать максимальную пользу из любых данных, даже если это был «провал», учиться на своих ошибках и действовать дальше, продвигая бизнес.

Рис. 10.2. Петля обратной связи: планирование, измерение, выводы и повтор.
Источник: на основе рисунка Эндрю Фрэнсиса Фримена. Воспроизводится с разрешения
Этот аспект должен глубоко укорениться в корпоративной культуре компании. В компании с управлением на основе данных, где все сотрудники наблюдают за данными, любой может выдвинуть гипотезу и большинство сотрудников используют данные в работе, как правило, наблюдаются активная вовлеченность в процесс и заинтересованность. Сотрудники способны делать наблюдения и знают, что за их работой тоже наблюдают. Когда в компании четко определены цели, а сотрудники сосредоточены на основных KPI, им действительно важно, когда эксперимент проваливается или программа «взлетает». Они будут пытаться разобраться в причинах, чтобы улучшить процесс. Поддерживайте этот настрой и не останавливайтесь, если результаты A/B говорят о «провале», — воспринимайте это как процесс обучения, который позволит в будущем выдвинуть более удачную гипотезу.
Управление на основе данных требует гибкости и готовности вносить изменения и на уровне компании: по мере роста и развития компании вы должны быть готовы реорганизовать свои команды специалистов по работе с данными и изменить их место в структуре организации.
Читать дальшеИнтервал:
Закладка: