Александр Артеменко - Удивительный мир органической химии

Тут можно читать онлайн Александр Артеменко - Удивительный мир органической химии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Дрофа, год 2005. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Артеменко - Удивительный мир органической химии краткое содержание

Удивительный мир органической химии - описание и краткое содержание, автор Александр Артеменко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге рассказывается об удивительном мире соединений углерода, о законах и явлениях в органической химии, о химических связях между атомами в органических молекулах, об ученых-химиках, о научных открытиях.
Книга адресована старшеклассникам, учителям, а также тем, кто интересуется органической химией.

Удивительный мир органической химии - читать онлайн бесплатно полную версию (весь текст целиком)

Удивительный мир органической химии - читать книгу онлайн бесплатно, автор Александр Артеменко
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Цис транс изомеры имея различное пространственное строение отличаются - фото 85

Цис-, транс изомеры, имея различное пространственное строение, отличаются физическими, химическими, а иногда даже — физиологическими свойствами.

Как получают этилен? Обычно его выделяют из газов нефтепереработки, а также из газов коксования угля. Но можно получать этилен и в лаборатории. Еще в 1860 г., исследуя взаимодействие йодистого метилена с галогеноотнимающими средствами, А. М. Бутлеров не только получил этилен, но и сделал вывод о том, что в его молекуле должна быть двойная связь! Эта реакция протекала так:

Отщепляя воду от этилового спирта тоже можно получить этилен Для этого спирт - фото 86

Отщепляя воду от этилового спирта, тоже можно получить этилен. Для этого спирт нагревают с концентрированной серной кислотой:

Если же вместо этилового спирта использовать пропиловый спирт то получим - фото 87

Если же вместо этилового спирта использовать пропиловый спирт, то получим второй представитель алкенов — пропилен (пропен):

Пропилен во многом напоминает этилен Он легко вступает в реакции - фото 88

Пропилен во многом напоминает этилен. Он легко вступает в реакции присоединения. При присоединении водорода (в присутствии катализатора) он превращается в пропан, а при воздействии галогенов — в галогенопроизводные:

Галогеноводороды также присоединяются к пропилену Но в отличие от этилена в - фото 89

Галогеноводороды также присоединяются к пропилену. Но в отличие от этилена в этом случае может получиться два продукта.

Посмотрите внимательно на их формулы Нетрудно заметить что атомы хлора и - фото 90

Посмотрите внимательно на их формулы. Нетрудно заметить, что атомы хлора и водорода по-разному присоединились к углеродным атомам. Эту реакцию еще в XIX в. изучал Владимир Владимирович Марковников (1838-1904). Он установил 1869 правило которое носит его имя атом водорода в этой - фото 91 Он установил (1869) правило, которое носит его имя: атом водорода в этой реакции присоединяется к углеродному атому, с которым связано больше атомов водорода, а атом галогенак атому углерода, у которого водородных атомов меньше. Следовательно, из двух продуктов наиболее вероятным будет 2-хлорпропан. Как сейчас химики объясняют это правило?

Молекула пропилена, в отличие от молекулы этилена, несимметрична. Поэтому в ней электронная плотность распределена неравномерно. Дело в том, что электронная плотность в молекуле смещена от метильной группы в сторону двойной связи:

Направление распределения электронов показано стрелками На крайнем углеродном - фото 92

Направление распределения электронов показано стрелками. На крайнем углеродном атоме, который связан двойной связью, образуется небольшой (частичный) отрицательный заряд, обозначаемый δ -(дельта минус). На втором же атоме углерода создается недостаток электронов (возникает частичный положительный заряд δ +). Теперь нетрудно догадаться, что положительно заряженный атом водорода (протон) свяжется с крайним углеродным атомом (он несет избыток электронной плотности), а атом галогена устремится туда, где атом углерода имеет частичный положительный заряд.

Этиленовые углеводороды обладают еще одним интересным свойством. Они вступают в реакцию полимеризации, в результате которой образуется полимерный продукт. Например, при полимеризации этилена химики синтезируют замечательный продукт — полиэтилен:

О таких реакциях мы поговорим позже когда познакомимся с высокомолекулярными - фото 93

О таких реакциях мы поговорим позже, когда познакомимся с высокомолекулярными соединениями.

Этиленовые углеводороды горят с выделением энергии. Вот как можно записать реакцию горения этилена:

С воздухом этилен как и метан образует взрывоопасные смеси В заключение - фото 94

С воздухом этилен, как и метан, образует взрывоопасные смеси.

В заключение скажем, что этилен и его гомологи — источники большого числа разнообразных органических соединений. Например, этилен используют для получения полиэтилена, этилового спирта, галогенопроизводных, оксида этилена и многих других ценных продуктов.

3.3. Всем известный ацетилен

Углеродные атомы могут соединяться между собой не только с помощью двойной связи, но и тройной. Самым простым углеводородом, содержащим тройную связь, является известный многим газ — ацетилен. Этот газ бесцветен, не имеет запаха. Однако при его получении из карбида кальция (а именно так получают ацетилен в технике) образуются газообразные примеси (РН 3, H 2S, NH 3), которые придают ацетилену типичный «карбидный запах». Наверное, многие его ощущали в тех местах, где занимаются сваркой или резкой металлов. Ацетилен при горении в кислороде создает высокотемпературное пламя (свыше 3000 °С). Это и используют в технике. Кстати, ацетилен для автогенной сварки начали использовать еще в 1906 г. в США. Смеси ацетилена с кислородом или воздухом взрывоопасны, поэтому ацетилен хранят и транспортируют в специальных баллонах.

Впервые об ацетилене узнали в 1836 г., когда он был получен при действии воды на карбид кальция (СаС 2). Но в 1862 г. этот газ уже был синтезирован М. Бертло при пропускании водорода через электрическую дугу между двумя угольными электродами (т. е. из элементов — углерода и водорода). Этот же ученый определил его состав (С 2Н 2) и дал этому газу название — ацетилен. Кроме того, он предположил, что ацетилен является первым углеводородом, образующим гомологический ряд с общей формулой С nН 2n-2.

Итак, молекула ацетилена состоит из двух атомов углерода и двух водородных атомов. Следовательно, чтобы соблюсти четырехвалентность атома углерода, формулу ацетилена следует записать так:

Удивительный мир органической химии - изображение 95

Ацетилен — самое простое органическое соединение с тройной связью между углеродными атомами. Как же устроена такая связь?

Для объяснения снова обратимся к теории гибридизации. Согласно этой теории атом углерода в молекуле ацетилена находится в состоянии sp -гибридизации. Перекрыванием двух sp -гибридных орбиталей (по одной от каждого углеродного атома) образуется одна связь между углеродными атомами. Это — σ-связь, которую в формулах обозначаем одной черточкой. Две другие sp -гибридные орбитали (также по одной от каждого углеродного атома) образуют с 1 s -орбиталями двух водородных атомов две σ-связи С—Н. Они расположены друг относительно друга под углом 180°. Но у каждого углеродного атома остались еще по две негибридизованные 2 р -орбитали! Вот они-то, перекрываясь в двух взаимно перпендикулярных плоскостях, и образуют две π-связи. В формуле они обозначены еще двумя черточками. Обратите внимание, что перекрывание 2 p -орбиталей, как в случае этилена, происходит «боками», а не «лбами». Поэтому прочность образовавшихся π-связей незначительна. Как видно из рисунка 17, молекула ацетилена имеет линейное строение. Таким образом, символ из трех черточек в формуле молекулы ацетилена означает сочетание одной σ-связи и двух π-связей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Артеменко читать все книги автора по порядку

Александр Артеменко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Удивительный мир органической химии отзывы


Отзывы читателей о книге Удивительный мир органической химии, автор: Александр Артеменко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x