Александр Артеменко - Удивительный мир органической химии
- Название:Удивительный мир органической химии
- Автор:
- Жанр:
- Издательство:Дрофа
- Год:2005
- Город:Москва
- ISBN:5-7107-9540-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Артеменко - Удивительный мир органической химии краткое содержание
Книга адресована старшеклассникам, учителям, а также тем, кто интересуется органической химией.
Удивительный мир органической химии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Реакция сульфирования (реакция с серной кислотой). Концентрированная серная кислота при нагревании взаимодействует с бензолом, образуя бензолсульфокислоту. При этом на бензол действует сульфониевый ион — S +O 3H, который образуется в результате равновесия:

Уходящий протон соединяется затем с бисульфат-ионом, давая снова серную кислоту:

Все эти производные бензола — ценные химические вещества. Как мы увидим в дальнейшем, многие из них нашли широкое применение.
4.4. Бензольные кольца вместе и врозь
В 1819 г. в каменноугольной смоле было обнаружено бесцветное кристаллическое вещество, которое английский химик Джон Кидд (1780-1851) спустя два года назвал нафталином (от слова нафта — летучая часть нефти). Состав нафталина был установлен в 1858 г. русским химиком Александром Абрамовичем Воскресенским (1809-1880). Эмпирическая формула этого вещества оказалась такой: С 10Н 8. Для установления его структурной формулы потребовалось еще десять лет. Заслуга в этом принадлежит двум немецким химикам — Э. Эрленмейеру и К. Требе (1841-1927). В результате проведенных исследований оказалось, что молекула нафталина состоит из двух бензольных колец, соединенных вместе:

Сегодня мы знаем о нафталине многое. Так, химики относят его к ароматическим соединениям. Это связано с тем, что его десять 2 p -орбиталей, взаимно перекрываясь друг с другом, образуют единое π-электронное облако (кстати, две 2 p -орбитали являются общими для двух колец). Однако рентгеноструктурный анализ, проведенный в 1951 г., показал, что в молекуле нафталина (в противоположность бензолу) углерод-углеродные связи несколько различаются между собой по длине. Поэтому π-электронная плотность в его молекуле менее выравнена, чем в молекуле бензола. Все это сказалось и на химических свойствах нафталина. Нафталин может вступать не только в реакции замещения, как бензол, но и в реакции присоединения. Есть еще одна особенность нафталина, которая отличает его от бензола: его водородные атомы немного отличаются друг от друга. Это проявляется в том, что одни из них сравнительно легко замещаются на другие атомы или группы атомов, а другие — труднее. Так, при галогенировании, нитровании и сульфировании заместитель становится прежде всего в положение 1 (или то же самое 4, 5, 8):

Менее равномерное распределение π-электронной плотности делает нафталин более «непредельным» (менее ароматичным), чем бензол. Поэтому он вступает также и в реакции присоединения и окисления. Например, при восстановлении нафталина (присоединение атомов водорода) образуются два продукта — тетралин и декалин.

Эти продукты используют в качестве растворителей жиров.
При окислении нафталина образуется фталевый ангидрид.

Его применяют для получения полимеров, красителей и лекарственных препаратов.
Еще совсем недавно нафталин в быту использовали в качестве средства против моли. Нафталиновый запах в платяном шкафу хорошо знаком людям старшего поколения. Одежду и особенно меховые изделия обрабатывали нафталином (нафталин легко испаряется, и его пары отпугивают моль, но не уничтожают). Однако, как установили, нафталин не такой уж безобидный препарат и для человека. Поэтому использование нафталина с этой целью было запрещено в нашей стране еще в 1988 г. Вместо нафталина сейчас используют более безопасные для человека средства.
Если к молекуле нафталина «приклеить» еще одно бензольное кольцо, то получим другое соединение — антрацен.

Антрацен (от греч. антракс — уголь) был обнаружен в 1857 г. в продуктах перегонки каменноугольной смолы русским химиком Юлием Федоровичем Фрицше (1808-1871). Он же определил и его состав, который отвечал эмпирической формуле С 14Н 10.
Антрацен обладает ароматическими свойствами, однако они выражены еще в меньшей степени, чем у нафталина (а тем более у бензола). Это связано, как и в случае нафталина, с неодинаковыми длинами углерод-углеродных связей в молекуле. Поэтому антрацен может вступать не только в реакции замещения, но и присоединения и окисления. В этих реакциях наиболее активными водородными атомами являются те, которые связаны с углеродными атомами 9 и 10. Именно туда направляются заместители при реакциях замещения. Например:

Антрацен, как и нафталин, вступает в реакции восстановления.

При окислении антрацена образуется соединение с двумя карбонильными группами — антрахинон.

Антрахинон — основа многочисленных органических красителей, которые так и называются — антрахиноновые. Самым первым и давно известным таким красителем был знаменитый ализарин .

Этот краситель в древности выделяли из корней марены, которую для этих целей выращивали на побережье Средиземного моря. Даже трудно представить, сколько нужно было переработать этих растений, чтобы получить несколько граммов красителя! Естественно, что его цена была очень высокой и он не мог широко использоваться для промышленных целей. Вот если бы удалось получить ализарин синтетическим путем! Но в то время это было еще мечтой. И только в 1868 г. немецкие химики К. Гребе и К. Либерман (1842-1914) сообщили о том, что они знают, как устроен этот краситель, и даже получили его в лаборатории. Об этом заявил К. Гребе на заседании Химического общества в начале 1869 г., а уже через два года синтетический краситель поступил в продажу. Он был чище и качественнее природного, но, главное, — намного дешевле. В настоящее время этот краситель используется мало. Зато широко применяются другие производные антрахинона, которые более качественно окрашивают ткани в многочисленные цвета. Но об этом мы расскажем в другом разделе этой книги.
Читать дальшеИнтервал:
Закладка: