Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]

Тут можно читать онлайн Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство Государственное Издательство Детской Литературы, год 1954. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] краткое содержание

Занимательная арифметика [Загадки и диковинки в мире чисел] - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге автор предлагает удивительную игру с числами. Книга дает возможность получить много интересных и полезных сведений о математике.
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.

Занимательная арифметика [Загадки и диковинки в мире чисел] - читать онлайн бесплатно ознакомительный отрывок

Занимательная арифметика [Загадки и диковинки в мире чисел] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

"Три — число совершенное. Единица для числа 3 то же, что диаметр для круга. Среди прочих чисел 3 то же, что круг среди фигур. Число 3 — единственное, имеющее центр. Остальные числа — эллипсы, имеющие два фокуса. Отсюда следующая особенность, присущая единственно числу 3: сложите цифры любого числа, кратного 3, сумма всегда делится без остатка на 3".

В этом туманном и мнимо глубокомысленном откровении все неверно: что ни фраза, то либо вздор, либо вовсе бессмыслица. Верно только замечание о свойстве суммы цифр, но свойство это не вытекает из сказанного и к тому же не представляет исключительной особенности числа 3: им отличается в десятичной системе также и число 9, а во всех вообще системах — числа, на единицу меньшие основания.

Диковинки нашей галереи — иного рода: в них нет ничего таинственного или неразгаданного.

Приглашаю читателя совершить экскурсию по галерее таких числовых диковинок и познакомиться с некоторыми из них.

Пройдем, не останавливаясь, мимо первых витрин, заключающих числа, свойства которых нам хорошо знакомы. Мы знаем уже, почему попало в галерею диковинок число 2: не потому, что оно первое четное число [24] Первым четным числом можно, впрочем, считать не 2, а 0. , а потому, что оно — основание самой любопытной системы счисления (см. стр. 65).

Не удивимся мы, встретив тут 5 — одно из наших любимейших чисел, играющее важную роль при всяких "округлениях". Не будет неожиданностью для нас найти здесь и число 9 — конечно, не как "символ постоянства" [25] Древние (последователи Пифагора) считали 9 символом постоянства, "так как все числа, кратные 9, имеют сумму цифр, кратную 9". , а как число, облегчающее нам проверку всех арифметических действий (см. стр. 43). Но вот витрина, за стеклом которой мы видим

ЧИСЛО 12

Чем оно замечательно? Это число месяцев в году и число единиц в дюжине. Но что, в сущности, особенного в дюжине? Немногим известно, что 12 — старинный и едва не победивший соперник числа 10 в борьбе за почетный пост основания системы счисления. Культурнейший народ древнего Востока — вавилоняне и их предшественники, населявшие Двуречье, вели счет в двенадцатеричной системе счисления. И если бы не пересилившее влияние Индии, подарившей нам десятичную систему, мы, вероятно, унаследовали бы от Вавилона двенадцатеричную систему. Кое в чем мы и до сих пор платим дань этой системе, несмотря на победу десятичной. Наше пристрастие к дюжинам и гроссам [26] Гросс — 12 дюжин. В коробке перьев — гросс, 144 штуки. , наше деление суток на 2 дюжины часов деление часа на 5 дюжин минут, деление минуты на столько же секунд, деление круга на 30 дюжин градусов, наконец деление фута на 12 дюймов [27] Фут равен 30,479 см. ,— не свидетельствует разве все это (и многое другое) о том, как велико в наши дни влияние этой древней системы?

Вавилонский счет на дюжины до сих пор сохранился у нас в исчислении времени, в делении окружности, в типографских мерах.

Хорошо ли, что в борьбе между дюжиной и десяткой победила последняя? Конечно, сильными союзницами десятки были и остаются наши собственные руки с десятью пальцами — живые счетные машины. Но если бы не это, то следовало бы безусловно отдать предпочтение 12 перед 10. Гораздо удобнее производить расчеты по двенадцатеричной системе, нежели по десятичной. Причина та, что число 10 делится без остатка на 2 и на 5, между тем как 12 делится и на 2, и на 3, и на 4, и на 6. У 10 всего два делителя, у 12 — четыре. Преимущества двенадцатеричной системы станут вам яснее, если вы примете в соображение, что в двенадцатеричной системе число, оканчивающееся нолем, кратно и 2, и 3, и 4, и 6; подумайте, как удобно дробить число, когда и 1/ 2, и 1/ 3, и 1/ 4, и 1/ 6 его должны быть целыми числами! Если же выраженное в двенадцатеричной системе число оканчивается двумя нолями, то оно должно делиться без остатка на 144, а следовательно, и на все множители 144, то-есть на следующий длинный ряд чисел:

2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.

Четырнадцать делителей — вместо тех восьми, которые имеют числа, написанные в десятичной системе, если оканчиваются двумя нолями (2, 4, 5, 10, 20, 25, 50 и 100). В нашей системе только дроби вида 1/ 2, 1/ 4, 1/ 5, 1/ 20и т. д. превращаются в конечные десятичные; в двенадцатеричной же системе можно написать без знаменателя гораздо более разнообразные дроби, и прежде всего: 1/ 2, 1/ 3, 1/ 4, 1/ 6, 1/ 8, 1/ 9, 1/ 12, 1/ 16, 1/ 18, 1 24, 1/ 36, 1/ 48, 1/ 72, 1/ 144, которые соответственно изобразятся так:

0,6; 0,4; 0,3; 0,2; 0,16; 0,14; 0,1; 0,09; 0,08; 0,06; 0,04; 0,03; 0,02; 0,01.

Было бы, впрочем, большим заблуждением думать, что делимость числа может зависеть от того, в какой системе счисления оно изображено. Если орехи, заключающиеся в данном мешке, могут быть разложены в пять одинаковых куч, то это свойство их, конечно, не изменится от того, будет ли наше число орехов выражено в той или иной системе счисления, или отложено на счетах, или написано прописью, или, наконец, изображено каким-либо иным способом. Если число, написанное в двенадцатеричной системе, делится на 6 или на 72, то, будучи выражено в другой системе счисления, например в десятичной, оно должно иметь те же делители. Разница лишь в том, что в дведадцатеричной системе делимость на 6 или на 72 легче обнаружить (число оканчивается одним или двумя нолями).

Когда говорят о преимуществе двенадцатеричной системы в смысле делимости на большое число делителей, то имеют в виду, что благодаря склонности нашей к "круглым" числам на практике будут чаще встречаться числа, оканчивающиеся в двенадцатеричной системе нолями.

При таких преимуществах двенадцатеричной системы неудивительно, что среди математиков раздавались голоса за полный переход на эту систему. Однако мы уже чересчур тесно сжились с десятичной системой, чтобы решаться на такую реформу.

Великий французский математик Лаплас так высказался по этому вопросу 100 лет назад: "Основание нашей системы нумерации не делится на 3 и на 4, то-есть на два делителя, весьма употребительные по их простоте. Присоединение двух новых знаков (цифр) дало бы системе счисления это преимущество; но такое нововведение было бы несомненно отвергнуто. Мы потеряли бы выгоду, породившую нашу арифметику, — именно, возможность счета по пальцам рук".

Напротив, следовало бы ради единообразия перейти также в измерении дуг от употребительных градусов и минут к новым, десятичным.

Такую реформу пытались провести во Франции, но она не привилась. Не кто иной, как упомянутый Лаплас, был горячим сторонником этой реформы. Его знаменитая книга "Изложение системы мира" последовательно проводит десятичное подразделение углов: градусом он называет не 90-ю, а 100-ю долю прямого угла, минутой — 100-ю часть градуса и т. д. Лаплас высказался даже за десятичное подразделение часов и минут. "Однообразие системы мер требует, чтобы день был разделен на 100 часов, час на 100 минут и минута на 100 секунд", — писал он.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная арифметика [Загадки и диковинки в мире чисел] отзывы


Отзывы читателей о книге Занимательная арифметика [Загадки и диковинки в мире чисел], автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x