Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]
- Название:Занимательная арифметика [Загадки и диковинки в мире чисел]
- Автор:
- Жанр:
- Издательство:Государственное Издательство Детской Литературы
- Год:1954
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] краткое содержание
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.
Занимательная арифметика [Загадки и диковинки в мире чисел] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
12345679 х 27 = 333333333
12345679 х 36 = 444444444
12345679 х 45 = 555555555
12345679 х 54 = 666666666
12345679 х 63 = 777777777
12345679 х 72 = 888888888
12345679 х 81 = 999999999
Откуда такая закономерность в результатах?
Примем во внимание, что
12345 678 х 9 + 9 = (12 345 678 + 1) х 9 = 12 345 679 х 9.
Поэтому
12345 679 х 9 = 111 111 111.
А отсюда прямо следует, что
12 345 679 х 9 х 2 = 222 222 222,
12 345 679 х 9 х 3 = 333 333 333,
12 345 679 х 9 х 4 = 444 444 444 и т. д.
Любопытно, что получится, если число 111 111 111, с которым мы сейчас имели дело, умножить само на себя? Заранее можно подозревать, что результат должен быть диковинный, но какой именно?
Если вы обладаете способностью четко рисовать в воображении ряды цифр, вам удастся найти интересующий нас результат, даже не прибегая к выкладкам на бумаге. В сущности, здесь дело сводится только к надлежащему расположению частных произведений, потому что умножать приходится все время лишь единицу на единицу — действие, могущее затруднить разве лишь фонвизинского Митрофанушку, размышлявшего о результате умножения "единожды один". Сложение же частных произведений сводится к простому счету единиц [29] В двоичной системе счисления, как мы уже объяснили, все умножения именно такого рода. На этом примере еще раз наглядно убеждаемся в преимуществах двоичной системы.
. Вот результат этого единственного в своем роде умножения (при выполнении которого не приходится ни разу прибегать к действию умножения):
Все девять цифр результата симметрично убывают от середины в обе стороны.
Те из читателей, которых утомило обозрение числовых диковинок, могут покинуть здесь галерею и перейти в следующие отделения, где показываются фокусы и выставлены числовые великаны и карлики; я хочу сказать: они могут прекратить чтение этой главы и обратиться к дальнейшим. Но кто желает познакомиться еще с несколькими интересными достопримечательностями мира чисел, приглашаю осмотреть со мною небольшой ряд ближайших витрин.
Что за странные кольца выставлены в следующей витрине нашей галереи? Перед нами три плоских кольца, вращающихся одно в другом.
На каждом кольце написаны шесть цифр в одном и том же порядке, именно — обозначено число 142857.
Кольца обладают следующим удивительным свойством: как бы ни были они повернуты, мы при сложении двух написанных на них чисел, считая от любой цифры в направлении часовой стрелки, получим во всех случаях шестизначное число (если только результат вообще будет шестизначный), лишь немного подвинутое! В том положении, например, какое изображено на прилагаемом чертеже, мы получаем при сложении двух наружных колец:
142 857
+
428 571
_______
571 428
то-есть опять тот же ряд цифр: 142 857, только цифры 5 и 7 перенеслись из конца в начало.
Вращающиеся числовые кольца.
При другом расположении колец относительно друг друга имеем такие случаи:
285 714 + 571 428 = 857 142
714 285 + 142 857 = 857 142
и т. п.
Исключение составляет случай, когда в результате получается 999 999:
285 714 + 714 285 = 999 999
(Причину других отступлений от указанного правила читатель поймет, когда дочитает эту статью до конца.)
Мало того. Тот же ряд цифр в той же последовательности получим и при вычитании чисел, написанных на кольцах.
Например:
428571 — 142857 = 285714
571428 — 285714 = 285714
714285 — 142857 = 571428
Исключение составляет случай, когда приведены к совпадению одинаковые цифры; тогда, разумеется, разность равна нолю.
Но и это еще не все. Умножьте число 142 857 на 2, на 3, на 4, на 5 или на 6 — и вы получите снова то же число, лишь передвинутое, в круговом порядке, на одну или несколько цифр:
142857 х 2 = 285714,
142857 х 3 = 428571,
142857 х 4 = 571428,
142857 х 5 = 714285,
142857 х 6 = 857142.
Чем же все загадочные особенности нашего числа обусловлены?
Мы нападем на путь к разгадке, если продлим немного последнюю табличку и попробуем умножить наше число на 7: в результате получится 999999. Значит, число 142 857 не что иное, как седьмая часть 999 999; и, следовательно, дробь 142857/999999 = 1/7. Действительно, если станете превращать 1/ 7в десятичную дробь, вы получите:
Наше загадочное число есть период бесконечной периодической дроби, которая получается при превращении 1/ 7в десятичную. Становится понятным теперь, почему при удвоении, утроении и т. д. этого числа происходит лишь перестановка одной группы цифр на другое место. Ведь умножение этого числа на 2 делает его равным 2/ 7и, следовательно, равносильно превращению в десятичную дробь уже не 1/ 7, а 2/ 7. Начав же превращать дробь 2/ 7в десятичную, вы сразу заметите, что цифра 2 — один из тех остатков, которые у нас уже получались при превращении 1/ 7; ясно, что должен повториться и прежний ряд цифр частного, но начнется он с другой цифры. Иными словами, должен получиться тот же период, но только несколько начальных цифр его очутятся на конце. То же самое произойдет и при умножении на 3, на 4, на 5 и на 6, то-есть на все числа, получающиеся в остатках. При умножении же на 7 мы должны получить единицу, или — что то же самое — 0,9999…
Любопытные результаты сложения и вычитания чисел на кольцах находят себе объяснение в том же факте, что 142 857 есть период дроби, равной 1/ 7. В самом деле: что мы собственно делаем, поворачивая кольцо на несколько цифр? Переставляем группу цифр с начала строки на конец, то-есть согласно только что сказанному умножаем число 142857 на 2, на 3, на 4 и т. д. Следовательно, все действия сложения или вычитания чисел, написанных на кольцах, сводятся к сложению или вычитанию дробей 1/ 7, 2/ 7, 3/ 7и т. д. В результате мы должны получить, конечно, несколько седьмых долей, то-есть опять-таки наш ряд цифр 142 857 в той или иной круговой перестановке. Отсюда надо исключить лишь случаи, когда складываются такие числа седьмых долей, которые в сумме дают единицу или больше 1.
Но и последние случаи исключаются не вполне: они дают результат, правда не тождественный с рассмотренными, но все же сходный с ними. Рассмотрим внимательнее, что должно получиться от умножения нашего загадочного числа на множитель больше 7, то-есть на 8, на 9 и т. д. Умножить 142 857, например, на 8 мы можем так: умножить сначала на 7 и к произведению (то-есть к 999 999) прибавить наше число:
142 857 х 8 = 142 857 х 7 + 142 857 = 999 999 + 142 857 = 1 000 000 — 1 + 142 857 = 1 000 000 + (142857 — 1).
Окончательный результат — 1 142 856 — отличается от умножаемого 142 857 только тем, что впереди стоит еще одна единица, а последняя цифра на единицу же уменьшена. По сходному правилу составляются произведения 142 857 на всякое другое число больше 7, как легко усмотреть из следующих строк:
142857 х 8 = (142 857 х 7) + 142 857 = 1 142856,
142 857 х 9 = (142 857 х 7) + (142 857 х 2) = 1 285 713,
142 857 х 10 = (142 857 х 7) + (142 857 х 3) = 1 428 570,
142 857 х 16 = (142 857 х 7 х 2) + (142 857 х 2) = 2 285 712,
142 857 х 39 = (142 857 х 7 х 5) + (142 857 х 4) = 5 571 423.
Читать дальшеИнтервал:
Закладка: