Лев Генденштейн - Алиса в стране математики
- Название:Алиса в стране математики
- Автор:
- Жанр:
- Издательство:Паритет Лтд
- Год:1994
- Город:Харьков
- ISBN:5-86906-066-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Генденштейн - Алиса в стране математики краткое содержание
Книга построена на занимательных сказочных сюжетах с
персонажами всемирно известных сказок Льюиса Кэрролла «Алиса в
Стране Чудес» и «Алиса в Зазеркалье» и призвана пробудить у детей
интерес к математике, развить творческое воображение и логическое
мышление. В книге содержатся также исторические экскурсы,
знакомящие с великими математиками и историей возникновения и
развития математики с древности до наших дней.
Алиса в стране математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— Последнего момента нет вообще , потому что делить пополам можно без конца! Получается, что у этой загадки просто нет отгадки!
И тут Алиса увидела, что Заяц и Шляпник ужасно расстроились: Заяц готов был заплакать, а Шляпник утратил весь свой пыл и смотрел перед собой пустыми глазами.
— Но почему вас так огорчает, что последнего момента перед шестью часами нет? — удивилась Алиса.
— Неужели ты не понимаешь? — грустно сказал Шляпник. — Ведь если последнего момента нет, значит, шесть часов не наступят никогда ...
— Почему? — спросила Алиса.
— Потому что они могут наступить только после этого момента, а его-то как раз и нет ! — ответил Шляпник.
Тут Соня качнулся чуть сильнее и... свалился с чайника головой в торт!
КАК РЕШАЮТСЯ ЗАДАЧИ БЕЗ РЕШЕНИЙ
Казалось бы, кому могут быть интересны загадки без отгадок, или, говоря языком математиков, задачи, у которых нет решений ? Однако именно такие задачи приковывали внимание математиков в течение тысячелетий: эти непокорные задачи были вызовом человеческому уму, и поэтому они интриговали математиков так же сильно, как сыщиков — тайны загадочных преступлений.
Вот история трёх знаменитых задач, пришедших из глубокой древности.
Первая задача называется «квадратура круга» : как построить круг и квадрат одинаковой площади, пользуясь только циркулем и линейкой без делений?
Примерно так выглядят круг и квадрат одинаковой площади — чтобы закрасить их одним и тем же слоем краски, понадобится одинаковое количество краски
Условие задачи кажется настолько простым, что за неё берётся даже тот, кто только начал знакомиться с геометрией, однако решить её не удалось даже величайшим математикам! Правда, Архимед придумал способ, как можно подойти к точному решению сколь угодно близко .
Шли века и тысячелетия, но задача о квадратуре круга оставалась непобедимой. И только в конце XIX века немецкий математик Линдеман нашёл неожиданное решение этой задачи: он строго доказал, что с помощью только циркуля и линейки построить круг и квадрат одинаковой площади невозможно ! Это доказательство произвело на математиков такое сильное впечатление, что Линдемана нарекли «победителем задачи о квадратуре круга». Такой титул говорит, что строгое доказательство отсутствия решения математики считают тоже решением : ведь решить задачу — это найти все решения или доказать, что решений нет !
Вторая знаменитая задача называется «удвоение куба» . О происхождении этой задачи существует даже легенда.
Однажды на острове Делос в Эгейском море вспыхнула эпидемия чумы. В те времена перед чумой были бессильны даже мудрые греки. Единственное, что они могли сделать — обратиться за помощью к богам. Однако беседовать с богами напрямую мог не каждый древний грек — этим занимались только «оракулы», то есть «предсказатели судеб». И вот оракул, посоветовавшись с богом искусств Аполлоном, объявил, что для спасения от чумы надо удвоить золотой жертвенник Аполлону. Этот жертвенник имел форму куба, и жители Делоса поспешили как можно скорей отлить из золота ещё один такой же куб и поставили его поверх первого.
Однако чума не прекратилась.
— Надо удвоить жертвенник, сохранив его форму , — объяснил оракул. — Новый жертвенник должен быть тоже кубом , но чтобы найти размеры нового куба, Аполлон разрешает вам пользоваться только циркулем и линейкой!
Бедные делосцы, не сумев сами решить эту задачу, обратились к знаменитому философу Платону (он так уважал математику, что над входом в сад, где он, прогуливаясь, занимался со своими учениками, велел начертать: «Пусть не входит сюда не знающий геометрии»). Однако и Платон не смог решить задачу об удвоении куба.
Взялся за эту задачу и другой греческий математик — Архит. Он был не только выдающимся математиком, но и хорошим полководцем, однако даже математик-полководец не смог победить задачу об удвоении куба: хотя он и нашёл очень красивое решение, но оно требовало не только циркуля и линейки. К многочисленным заслугам Архита принадлежит, между прочим, и спасение Платона от рабства — как видите, жизнь древнегреческих учёных была не такой уж безмятежной: им приходилось не только прогуливаться с учениками по садам!
Второй из этих кубов имеет примерно вдвое больший объем , чем первый: если бы это были сосуды для воды, то во второй из них поместилось бы воды вдвое больше, чем в первый
Примерно в то же время (в IV веке до нашей эры) «удвоением куба» занимался ещё один древнегреческий математик — Менехм. О нём существует красивая легенда. Однажды Александр Македонский обратился к Менехму:
— Я хочу изучить всю премудрость греческой науки. Но скажи: нет ли для царей более короткого пути к геометрии?
— К геометрии нет царских путей, — ответил царю учёный. — Для всех — одна дорога!
Эта беседа настолько замечательна, что её приписывают ещё одному царю и ещё одному учёному: царю Птолемею и математику Евклиду, который действительно собрал «всю премудрость греческой науки» в большую книгу, которую он назвал «Начала» (Евклид уже тогда понимал, что это только начало , однако до сих пор в школах всего мира геометрию изучают почти по Евклиду!).
Среди греческих учёных, занимавшихся задачей об удвоении куба, был и Эратосфен, который первым придумал, как «отсеивать» простые числа от составных. Этот способ называется «решето Эратосфена» и используется до сих пор, хотя вычисления проводятся сегодня на электронно-вычислительных машинах. Эратосфен, кстати, был не только превосходным математиком, но и неплохим спортсменом — олимпийским чемпионом по пятиборью! Но и олимпийский чемпион не смог решить задачу об удвоении куба.
Эта задача «дразнила» математиков больше двух тысяч лет, и, наконец, Декарт заподозрил неладное: употребив сам немало сил на безуспешные попытки «удвоения куба», он предположил, что эта «простая» задача вообще не имеет решения. Однако только через два века после Декарта другой французский математик, Ванцель, смог строго доказать, что задача об удвоении куба действительно неразрешима! Как и в задаче о квадратуре круга, безупречное доказательство отсутствия решения и стало настоящим решением задачи.
Третьей знаменитой задачей древности была задача о «трисекции угла» : как с помощью циркуля и линейки разделить любой угол на три равные части? Эта задача продержалась также больше двух тысячелетий и «победил» её тот же самый Ванцель — доказал, что она неразрешима.
Читать дальшеИнтервал:
Закладка: