Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вы абсолютно правы. Поток с более высоким приоритетом всегда будет вытеснять поток с более низким приоритетом. Но при этом все-таки может произойти кое-что интересное. Давайте рассмотрим сценарий с тремя потоками (в трех различных процессах, для простоты рассмотрения), где «L» — поток с низким приоритетом, «Н» — поток с высоким приоритетом, и «S» — сервер. На рисунке показаны все три потока со своими приоритетами.

Три потока с различными приоритетами.
В данный момент выполняется поток Н. Потоку сервера S, имеющему наивысший приоритет, пока делать нечего, так что он находится в режиме ожидания и блокирован на функции MsgReceive() . Поток L и хотел бы работать, но его приоритет ниже, чем у потока Н, который выполняется в данный момент. Все как вы и предполагали, да?
А теперь представьте себе, что поток Н принял решение «прикорнуть» на 100 миллисекунд — возможно, чтобы подождать медленное оборудование. Теперь выполняется поток L.
Вот тут-то все интересное и начинается.
В пределах своего нормального функционирования поток L посылает сообщение потоку сервера S, принуждая этим сервер S перейти в состояние READY и (поскольку поток S имеет высший приоритет из всех готовых к выполнению потоков) начать выполняться. К великому сожалению, сообщение, которое поток L направил к потоку сервера S, было сформулировано так: «Вычислить значение Пи с точностью до 50 знаков после запятой».
Очевидно, это займет более чем 100 миллисекунд. Поэтому, когда 100 миллисекунд сна потока Н истекут, поток Н перейдет в состояние READY — угадайте, что дальше? Поток Н не активизируется, постольку в состоянии READY находится поток S, имеющий более высокий приоритет!
Что здесь произошло? Произошло то, что поток с низким приоритетом «отстранил» от работы поток с более высоким приоритетом путем передачи процессора потоку с еще более высоким приоритетом. Это явление называется инверсией приоритетов.
Чтобы научиться не допускать таких вещей, мы должны поговорить о наследовании приоритетов. Простой вариант реализации наследования приоритета — заставить сервер S унаследовать приоритет клиентского потока:

Блокированные потоки.
При таком сценарии по истечении 100-миллисекундного интервала бездействия потока Н этот поток переходит в состояние READY и немедленно ставится на выполнение как имеющий наивысший приоритет.
Неплохо; однако, здесь есть еще один тонкий момент.
Предположим, что потоку Н вдруг становится нужно выполнить какие-то вычисления — например, найти 5034-е по порядку простое число. Он посылает сообщение потоку сервера S и блокируется.
Однако, в данный момент S по-прежнему вычисляет значение Пи, находясь на приоритете 5! В нашей выбранной для примера системе наверняка достаточно других потоков, имеющих приоритет выше, чем 5, которым тоже нужен процессор. Это автоматически значит, что процессорного времени на вычисление значения Пи у S остается не так уж и много.
Это еще одна форма инверсии приоритетов. В этом случае поток с низким приоритетом помешал потоку с более высоким приоритетом получить доступ к ресурсу. Сравните это с первой формой инверсии приоритета, где поток с низким приоритетом реально потреблял ресурсы процессора — в рассматриваемом сейчас случае этот поток не дает более приоритетному потоку доступа к ресурсам процессора, но сам при этом непосредственно их не потребляет.
К счастью, данная проблема решается тоже достаточно просто. Достаточно увеличить приоритет сервера так, чтобы он был равен наивысшему из приоритетов всех заблокированных клиентов:

Повышение приоритета сервера.
Здесь мы немного «обделяем» другие потоки, позволяя заданию потока L выполняться с приоритетом выше, чем он сам, но зато гарантируем, что поток Н получит свою заслуженную порцию процессорного времени.
Так в чем тут хитрость?
Никакой хитрости нет, QNX/Neutrino делает все для вас автоматически.
В QNX/Neutrino этот механизм реализован только на один уровень вглубь, так что если клиент посылает серверу сообщение, а этот сервер, в свою очередь, передает это сообщение другому серверу, то второй сервер наследует нормальный приоритет первого, а не приоритет, который первый унаследовал от клиента. Это означает, что если на первом сервере блокируется поток с более высоким приоритетом, то соответственно повышен будет приоритет только первого сервера (а поскольку первый сервер в этот момент блокирован на втором, приоритет которого уже не повышается и остается прежним, толку от этого не будет абсолютно никакого). Будьте внимательны!
Однако, и здесь есть еще одна тонкость. Как обеспечить возврат приоритета на тот уровень, который был до изменения?
Ваш сервер работает, обслуживает запросы клиентуры и автоматически регулирует свой приоритет каждый раз, когда ему приходится разблокироваться из функции MsgReceive() . Но когда он должен восстанавливать прежнее значение приоритета, которое было до вызова MsgReceive() ?
Рассмотрим два варианта развития событий.
• После обслуживания клиента сервер выполняет еще какие-то дополнительные действия. Это он должен сделать на своем приоритете, а не на приоритете клиента.
• После обслуживания клиента сервер немедленно вызывает MsgReceive() снова для обработки следующего запроса.
В первом случае для сервера было бы некорректно работать на приоритете клиента, поскольку он больше не делает для этого клиента никакой работы. Решение здесь очень простое. Используйте функцию pthread_setschedparam() (мы ее обсуждали в главе «Процессы и потоки») для возврата приоритету нужного значения.
Что касательно второго случая, то ответ достаточно прост. Кому какое дело?
Подумайте об этом. Какая разница, станет сервер RECEIVE-блокированным на приоритете 29 или на приоритете 2?
Главное — что он RECEIVE-блокирован! А коль скоро в этом состоянии он не расходует процессорное время, его приоритет является несущественным. Как только функция MsgReceive() разблокирует сервер, сервером будет унаследован приоритет нового клиента, и все будет работать как полагается.
Резюме
Обмен сообщениями представляет собой чрезвычайно мощную концепцию и является одним из основополагающих принципов, на которых построена QNX/Neutrino (как и все предыдущие версии QNX).
Читать дальшеИнтервал:
Закладка: