Уильям Стивенс - UNIX: разработка сетевых приложений
- Название:UNIX: разработка сетевых приложений
- Автор:
- Жанр:
- Издательство:Питер
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-94723-991-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Стивенс - UNIX: разработка сетевых приложений краткое содержание
Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.
UNIX: разработка сетевых приложений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
3. Клиент считывает полученную строку и выводит ее в стандартный поток вывода, добавляя к ней номер потока и порядковый номер для данного потока.
Наше приложение вместе с функциями, используемыми для операций ввода и вывода, изображено на рис. 10.1.

Рис. 10.1. Простое потоковое приложение SCTP с архитектурой клиент-сервер
Две стрелки между клиентом и сервером обозначают два однонаправленных потока (ассоциация в целом является полностью двусторонней). Функции fgets
и fputs
входят в стандартную библиотеку ввода-вывода. Мы не пользуемся функциями writen
и readline
из раздела 3.9, потому что в них нет необходимости. Вместо них мы вызываем sctp_sendmsg
и sctp_recvmsg
из разделов 9.9 и 9.10 соответственно.
Сервер в нашем примере будет относиться к типу «один-ко-многим». Этот вариант был выбран нами по одной важной причине. Примеры из главы 5 могут быть переделаны под SCTP внесением крайне незначительных изменений: достаточно изменить вызов socket, указав в качестве третьего аргумента IPPROTO_SCTP
вместо IPPROTO_TCP
. Однако приложение, полученное таким образом, не использовало бы дополнительные возможности, предоставляемые SCTP, за исключением поддержки многоинтерфейсных узлов. Написав сервер типа «один-ко-многим», мы смогли показать все достоинства SCTP.
10.2. Потоковый эхо-сервер SCTP типа «один-ко-многим»: функция main
Наши клиент и сервер SCTP вызывают функции в последовательности, представленной на рис. 9.2. Код последовательного сервера представлен в листинге 10.1 [1] Все исходные коды программ, опубликованные в этой книге, вы можете найти по адресу http://www.piter.com.
.
Листинг 10.1. Потоковый эхо-сервер SCTP
//sctp/sctpserv01.c
1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int sock_fd, msg_flags;
6 char readbuf[BUFFSIZE];
7 struct sockaddr_in servaddr, cliaddr;
8 struct sctp_sndrcvinfo sri;
9 struct sctp_event_subscribe evnts;
10 int stream_increment=1;
11 socklen_t len;
12 size_t rd_sz;
13 if (argc == 2)
14 stream_increment = atoi(argv[1]);
15 sock_fd = Socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);
16 bzero(&servaddr, sizeof(servaddr));
17 servaddr.sin_family = AF_INET;
18 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
19 servaddr.sin_port = htons(SERV_PORT);
20 Bind(sock_fd, (SA*)&servaddr, sizeof(servaddr));
21 bzero(&evnts, sizeof(evnts));
22 evnts.sctp_data_io_event = 1;
23 Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof(evnts));
24 Listen(sock_fd, LISTENQ);
25 for (;;) {
26 len = sizeof(struct sockaddr_in);
27 rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof(readbuf),
28 (SA*)&cliaddr, &len, &sri, &msg_flags);
29 if (stream_increment) {
30 sri.sinfo_stream++;
31 if (sri.sinfo_stream >=
32 sctp_get_no_strms(sock_fd, (SA*)&cliaddr, len))
33 sri.sinfo_stream = 0;
34 }
35 Sctp_sendmsg(sock_fd, readbuf, rd_sz,
36 (SA*)&cliaddr, len,
37 sri.sinfo_ppid,
38 sri.sinfo_flags, sri.sinfo_stream, 0, 0);
39 }
40 }
13-14
По умолчанию наш сервер отвечает клиенту через поток, номер которого на единицу больше номера потока, по которому было получено сообщение. Если приложению в строке вызова передается целочисленный аргумент, он интерпретируется как значение флага stream_increment
, с помощью которого приращение номера потока можно отключить. Мы воспользуемся этим параметром командной строки, когда будем говорить о блокировании в разделе 10.5.
15
Создается сокет SCTP типа «один-ко-многим».
16-20
Структура адреса сокета Интернета заполняется универсальным адресом ( INADDR_ANY
) и номером заранее известного порта сервера SERV_PORT
. Связывание с универсальным адресом означает, что конечная точка SCTP будет использовать все доступные локальные адреса для всех создаваемых ассоциаций. Для многоинтерфейсных узлов это означает, что удаленная конечная точка сможет устанавливать ассоциации и передавать пакеты на любой локальный интерфейс. Выбор номера порта SCTP основывался на рис. 2.10. Обратите внимание, что ход рассуждений для сервера тот же, что и в одном из предшествовавших примеров в разделе 5.2.
21-23
Сервер изменяет параметры подписки на уведомления для сокета SCTP. Сервер подписывается только на событие sctp_data_io_event
, что позволяет ему получать структуру sctp_sndrcvinfo
. По ее содержимому сервер сможет определять номер потока полученного сообщения.
24
Сервер разрешает устанавливать входящие ассоциации, вызывая функцию listen
. Затем управление передается главному циклу.
26-28
Сервер инициализирует размер структуры адреса сокета клиента, после чего блокируется в ожидании сообщения от какого-либо удаленного собеседника.
29-34
Сервер проверяет состояние флага stream_increment
и определяет, нужно ли увеличивать номер потока. Если флаг установлен (никакие аргументы в командной строке не передавались), сервер увеличивает номер потока, по которому было получено сообщение, на единицу. Если полученное число достигает предельного количества потоков (получаемого вызовом sctp_get_no_strms
), сервер сбрасывает номер потока в 0. Функция sctp_get_no_strms
в листинге не приведена. Она использует параметр SCTP_STATUS
(см. раздел 7.10) для определения согласованного количества потоков.
35-38
Сервер отсылает сообщения, используя идентификатор протокола, флаги и номер потока (который, возможно, был увеличен), хранящиеся в структуре sri
.
Заметьте, что нашему серверу не нужны уведомления об установке ассоциаций, поэтому он отключает все события, которые привели бы к передаче сообщений в буфер сокета. Сервер полагается на сведения из структуры sctp_sndrcvinfo
, а обратный адрес берет из переменной cliaddr
. Этого оказывается достаточно для отправки эхо-ответа собеседнику через установленную им ассоциацию.
Программа работает до тех пор, пока пользователь не завершит ее передачей сигнала.
10.3. Потоковый эхо-клиент SCTP типа «один-ко-многим»: функция main
В листинге 10.2 приведена функция main
нашего клиента SCTP.
Листинг 10.2. Потоковый эхо-клиент SCTP
//sctp/sctpclient01.c
1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int sock_fd;
6 struct sockaddr_in servaddr;
7 struct sctp_event_subscribe evnts;
8 int echo_to_all=0;
9 if (argc < 2)
10 err_quit("Missing host argument - use '%s host [echo]'\n", argv[0]);
11 if (argc > 2) {
Интервал:
Закладка: