Миран Липовача - Изучай Haskell во имя добра!
- Название:Изучай Haskell во имя добра!
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-749-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Миран Липовача - Изучай Haskell во имя добра! краткое содержание
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.
Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Следующая пара строк демонстрирует операцию >>=
уже поинтереснее. Обратите внимание: когда мы передавали значение Just 9
анонимной функции \x –> return (x*10)
, то параметр x
принимал значение 9
внутри функции. Выглядит это так, будто мы могли извлечь значение из обёртки Maybe
без сопоставления с образцом. И мы всё ещё не потеряли контекст нашего значения Maybe
, потому что когда оно равно Nothing
, результатом использования операции >>=
тоже будет Nothing
.
Прогулка по канату
Теперь, когда вы знаете, как передавать значение типа Maybe a
функции типа a –> Maybe b
, учитывая контекст возможной неудачи в вычислениях, давайте посмотрим, как можно многократно использовать операцию >>=
для обработки
вычислений нескольких значений Maybe a
.

Пьер решил сделать рабочий перерыв на рыбной ферме и попробовать заняться канатоходством. На удивление, ему это неплохо удаётся, но есть одна проблема: на балансировочный шест приземляются птицы! Они прилетают, немного отдыхают, болтают со своими пернатыми друзьями, а затем срываются в поисках хлебных крошек. Это не сильно беспокоило бы Пьера, будь количество птиц c левой стороны шеста всегда равным количеству птиц с правой стороны. Но порой всем птицам почему-то больше нравится одна сторона. В результате канатоходец теряет равновесие и падает (не волнуйтесь, он использует сетку безопасности!).
Давайте предположим, что Пьер удержит равновесие, если количество птиц на левой стороне шеста и на правой стороне шеста разнится в пределах трёх. Покуда, скажем, на правой стороне одна птица, а на левой – четыре, всё в порядке. Но стоит пятой птице опуститься на левую сторону, канатоходец теряет равновесие и кубарем летит вниз.
Мы сымитируем посадку и улёт птиц с шеста и посмотрим, останется ли Пьер на канате после некоторого количества прилётов и улётов птиц. Например, нам нужно увидеть, что произойдёт с Пьером, если первая птица прилетит на левую сторону, затем четыре птицы займут правую, а потом птица, которая была на левой стороне, решит улететь.
Код, код, код
Мы можем представить шест в виде простой пары целых чисел. Первый компонент будет обозначать количество птиц на левой стороне, а второй – количество птиц на правой:
type Birds = Int
type Pole = (Birds, Birds)
Сначала мы создали синоним типа для Int
, названный Birds
, потому что мы используем целые числа для представления количества имеющихся птиц. Затем создали синоним типа ( Birds
, Birds
) и назвали его Pole
(учтите: это означает «шест» – ничего общего ни с поляками, ни с человеком по имени Поль).
А теперь как насчёт того, чтобы добавить функции, которые принимают количество птиц и производят их приземление на одной стороне шеста или на другой?
landLeft :: Birds –> Pole –> Pole
landLeft n (left, right) = (left + n, right)
landRight :: Birds –> Pole –> Pole
landRight n (left, right) = (left, right + n)
Давайте проверим их:
ghci> landLeft 2 (0, 0)
(2,0)
ghci> landRight 1 (1, 2)
(1,3)
ghci> landRight (-1) (1,2)
(1,1)
Чтобы заставить птиц улететь, мы просто произвели приземление отрицательного количества птиц на одной стороне. Поскольку приземление птицы на Pole
возвращает Pole
, мы можем сцепить применения функций landLeft
и landRight
:
ghci> landLeft 2 (landRight 1 (landLeft 1 (0, 0)))
(3,1)
Когда мы применяем функцию landLeft 1
к значению (0, 0)
, у нас получается результат (1, 0)
. Затем мы усаживаем птицу на правой стороне, что даёт в результате (1, 1)
. Наконец, две птицы приземляются на левой стороне, что даёт в результате (3, 1)
. Мы применяем функцию к чему-либо, сначала записывая функцию, а затем её параметр, но здесь было бы лучше, если бы первым шел шест, а потом функция посадки. Предположим, мы создали вот такую функцию:
x -: f = f x
Можно применять функции, сначала записывая параметр, а затем функцию:
ghci> 100 -: (*3)
300
ghci> True -: not
False
ghci> (0, 0) -: landLeft 2
(2,0)
Используя эту форму, мы можем многократно производить приземление птиц на шест в более «читабельном» виде:
ghci> (0, 0) -: landLeft 1 -: landRight 1 -: landLeft 2
(3,1)
Круто!.. Эта версия эквивалентна предыдущей, где мы многократно усаживали птиц на шест, но выглядит она яснее. Здесь очевиднее, что мы начинаем с (0, 0)
, а затем усаживаем одну птицу слева, потом одну – справа, и в довершение две – слева.
Я улечу
Пока всё идёт нормально, но что произойдёт, если десять птиц приземлятся на одной стороне?
ghci> landLeft 10 (0, 3)
(10,3)
Десять птиц с левой стороны и лишь три с правой?! Этого достаточно, чтобы отправить в полёт самого Пьера!.. Довольно очевидная вещь. Но что если бы у нас была примерно такая последовательность посадок:
ghci> (0, 0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: landRight (-2)
(0,2)
Может показаться, что всё хорошо, но если вы проследите за шагами, то увидите, что на правой стороне одновременно находятся четыре птицы – а на левой ни одной! Чтобы исправить это, мы должны ещё раз взглянуть на наши функции landLeft
и landRight
.
Необходимо дать функциям landLeft
и landRight
возможность завершаться неуспешно. Нам нужно, чтобы они возвращали новый шест, если равновесие поддерживается, но завершались неуспешно, если птицы приземляются неравномерно. И какой способ лучше подойдёт для добавления к значению контекста неудачи, чем использование типа Maybe
? Давайте переработаем эти функции:
landLeft :: Birds –> Pole –> Maybe Pole
landLeft n (left,right)
| abs ((left + n) - right) < 4 = Just (left + n, right)
| otherwise = Nothing
landRight :: Birds –> Pole –> Maybe Pole
landRight n (left,right)
| abs (left - (right + n)) < 4 = Just (left, right + n)
| otherwise = Nothing
Вместо того чтобы вернуть значение типа Pole
, эти функции теперь возвращают значения типа Maybe Pole
. Они по-прежнему принимают количество птиц и прежний шест, как и ранее, но затем проверяют, выведет ли Пьера из равновесия приземление такого количества птиц. Мы используем охранные выражения, чтобы проверить, меньше ли разница в количестве птиц на новом шесте, чем 4. Если меньше, оборачиваем новый шест в конструктор Just
и возвращаем это. Если не меньше, возвращаем значение Nothing
, сигнализируя о неудаче.
Давайте опробуем этих деток:
ghci> landLeft 2 (0, 0)
Just (2,0)
ghci> landLeft 10 (0, 3)
Nothing
Когда мы приземляем птиц, не выводя Пьера из равновесия, мы получаем новый шест, обёрнутый в конструктор Just
. Но когда значительное количество птиц в итоге оказывается на одной стороне шеста, в результате мы получаем значение Nothing
. Всё это здорово, но, похоже, мы потеряли возможность многократного приземления птиц на шесте! Выполнить landLeft 1 (landRight 1 (0, 0))
больше нельзя, потому что когда landRight 1
применяется к (0, 0)
, мы получаем значение не типа Pole
, а типа Maybe Pole
. Функция landLeft 1
принимает параметр типа Pole
, а не Maybe Pole
.
Интервал:
Закладка: