Артур Бенджамин - Магия математики: Как найти x и зачем это нужно
- Название:Магия математики: Как найти x и зачем это нужно
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2016
- Город:Москва
- ISBN:978-5-9614-4466-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.
Магия математики: Как найти x и зачем это нужно - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Круг с r = 1 называется единичным. Если мы «растянем» такой круг по горизонтали с коэффициентом a и по вертикали с коэффициентом b , получится эллипс (или овал) вроде этого:

Подобная фигура имеет формулу

и площадь πab, что вполне логично, потому что площадь изначального единичного круга равняется π, после чего мы растянули ее на ab . Обратите внимание, что при a = b = r мы получим круг (а не эллипс) с радиусом r – π ab же, таким образом, превратится в π r ².
Существует несколько забавных фактов, связанных с эллипсами, которыми я хотел бы с вами поделиться. Например, вы можете нарисовать овал с помощью двух канцелярских кнопок, лески и карандаша.
Возьмите кнопки, воткните их в лист бумаги или картона и накиньте на них колечко из лески или прочной нитки (но до предела не натягивайте). Поставьте карандаш кончиком в центр получившейся конструкции и оттяните один из концов лески так, чтобы получился треугольник. А теперь постепенно передвигайте карандаш по бумаге вокруг кнопок, не ослабляя леску. Диаграмма, получившаяся в результате, будет иметь эллиптическую форму.

Местоположения кнопок называются фокусами эллипса, и они, конечно же, тоже волшебные. Если вместо кнопки в точку одного фокуса положить бильярдный шар и ударить по нему так, чтобы он покатился в случайном направлении, то после всего лишь одного касания о периметр он обязательно пройдет через точку второго фокуса.

Кстати, космические тела, вроде планет и комет, путешествуют вокруг солнца именно по эллиптической орбите. Естественно, я не смог удержаться:
И даже у затмения
Овальное строение!
А вот вам еще один очень интересный факт – не существует такой формулы, которая позволила бы просчитать длину эллипса. Зато есть некое приближенное представление, придуманное математическим гением по имени Сриниваса Рамануджан [22]и позволяющее оценить эту длину хотя бы примерно:
Обратите внимание, что при a = b = r выражение упрощается до (6 r – √( 16r ²)) = 2π r – длины окружности.
Число π появляется и в трехмерных фигурах. Возьмем для примера консервную банку, которая для любого математика является цилиндром . Так вот, объем цилиндра (то есть его внутреннее пространство) с радиусом r и высотой h составит
Объяснить эту формулу можно, представив цилиндр как совокупность окружностей, расположенных одна на другой так, чтобы образовалась стопка высотой h (представьте себе стопку подносов в ресторане и поймете, что я имею в виду).
А чему будет равна площадь поверхности цилиндра? Иными словами, сколько краски нам понадобится, чтобы покрасить все его внешние стороны, включая «крышку» и «донышко»? Держать ответ в памяти нет никакой необходимости – его можно получить в любой момент, условно разделив цилиндр на три части. Площади «крышки» и «донышка» будут равны π r ². Значит, их общий вклад в площадь поверхности цилиндра составит 2π r ². Чтобы узнать площадь третьей части, разрежем оставшийся «тубус» вдоль от верха до низа и разогнем его. У нас получится прямоугольник с шириной h и длиной 2π r (которая берется из длины прилегающей окружности). Его площадь будет равна 2π rh , что позволяет нам «собрать» формулу общей площади цилиндра:
Сфера есть трехмерный объект, в котором все наружные точки равноудалены от центра. Чему будет равен объем сферы с радиусом r ? Начнем с того, что такого размера объект войдет в цилиндр, имеющий радиус r и высоту 2 r , следовательно, его объем будет меньше π r ²(2 r ) = 2π r ³. По случайному стечению обстоятельств (надежно подкрепленному скрупулезными вычислениями) сфера займет ровно две трети этого пространства. Другими словами,

Формула для нахождения площади поверхности сферы выглядит еще проще, хотя путь к ней куда более тернист:
Давайте завершим раздел примерами, где у π появляется вкус мороженого и пиццы. Представьте себе рожок мороженого (также известный как конусовидный стаканчик) с высотой h и радиусом верхней окружности r. Длину образующей конуса – линии, проведенной от его кончика к любой точке верхней окружности – обозначим буквой s (самый простой способ ее вычислить – теорема Пифагора, потому что h ² + r ² = s ²).

Конус этот легко уместится в цилиндр радиусом r и высотой h , поэтому неудивительно, что его объем будет меньше π r ² h . Зато удивительно (и при этом очевидно без всяких вычислений) то, что меньше он будет ровно в 3 раза. Другими словами,

И хотя вычисления здесь и в самом деле совершенно не нужны, отказать себе в удовольствии, которое дарит нам эта красота и простота, совершенно невозможно: площадь поверхности конуса равна
Ну, и наконец, пицца, имеющая радиус z и толщину a , как видно на рисунке. Каков будет ее объем?

Это лакомство – не что иное, как необычной формы цилиндр (радиус z , высота a ), объем которого равен
Немного переделаем эту формулу – уверен, у вас слюнки потекут:
Удивительные лики π
Интервал:
Закладка: