Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Тут можно читать онлайн Артур Бенджамин - Магия математики: Как найти x и зачем это нужно - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство Литагент Альпина, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия математики: Как найти x и зачем это нужно
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-9614-4466-7
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание

Магия математики: Как найти x и зачем это нужно - описание и краткое содержание, автор Артур Бенджамин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно - читать онлайн бесплатно ознакомительный отрывок

Магия математики: Как найти x и зачем это нужно - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Артур Бенджамин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В том, что число π появляется в площадях и длинах всех кругообразных объектов, рассмотренных нами, ничего удивительного нет. Но только этим сфера его влияния не ограничивается – оно обнаруживается даже там, где, казалось бы, ему делать совершенно нечего.

Возьмем для примера множество n ! подробно рассмотренное нами в главе 4. Казалось бы, причем тут окружности, эллипсы и прочие подобные фигуры и объекты – ведь оно нужно исключительно для того, чтобы подсчитывать дискретные величины. Мы знаем, что значение его вырастает стремительно, причем настолько, что до сих пор нет ни одного более или менее удобного и легкого способа его просчитать. Например, чтобы вычислить значение 100 000! нам потребуется несколько тысяч операций умножения. И все-таки один способ есть – столь же хитрый, сколь и полезный. Основан он на формуле Стирлинга, которая выглядит как

Магия математики Как найти x и зачем это нужно - изображение 343

и в которой e = 2,71828… ( e – это еще одно важное иррациональное число, которое ждет вашего внимания в главе 10). Компьютер может подсчитать это до четырех значащих цифр – например, 64! = 1,269 × 10 89. А согласно формуле Стирлинга, 64! ≈ (64/ e ) 64√( 128π ) = 1,267 × 10 89. (Есть ли легкий способ возвести число в 64-ю степень? Да, есть! Поскольку 64 = 2 6, нам нужно взять 64/ e и возвести его в квадрат шесть раз.)

Знаменитая колоколообразная (или гауссова ) кривая , активно использующаяся в статистических исследованиях и некоторых экспериментальных науках, имеет высоту 1/√( ) (подробнее о ней – в главе 10).

Встречается число π и в бесконечных суммах как впервые наглядно показал - фото 344

Встречается число π и в бесконечных суммах: как впервые наглядно показал Леонард Эйлер, сложение квадратов обратных величин положительных целых значений дает нам

1 + 1/22 + 1/32 + 1/42 +… = 1 + 1/4 + 1/9 + 1/16 +… = π²/6

А если мы повторно возведем в квадрат каждое из значений выше, сумма обратных величин четвертой степени окажется равной

1 + 1/16 + 1/81 + 1/256 + 1/625 +… = π 4/90

Формулу эту можно обобщить, распространив на любой ряд обратных величин всех четных степеней основания числа 2 k . В ответе будет фигурировать π 2 k , умноженное на рациональное число.

А что насчет нечетных обратных величин? В главе 12 мы увидим, что сумма обратных величин положительных значений бесконечна. При любой нечетной степени больше 1 получим что-то наподобие этого:

1 + 1/8 + 1/27 + 1/64 + 1/125 +… =???

(это пример для кубов). Сумма здесь будет, по идее, конечной, вот только простой формулы для ее точного вычисления пока никто не нашел.

Невероятно, но факт: π всплывает даже в задачах, связанных с вероятностью. Например, если вы выберете два случайных больших числа, вероятность того, что у них не будет ни одного общего простого множителя, составит чуть больше 60 %. Это приблизительно. А если точно, то 6/π² = 0,6079…. И то, что этот результат является обратной величиной для одной из посчитанных нами чуть выше бесконечных сумм – вовсе не совпадение.

Из чего состоит π?

К тому, что число π немного превышает 3, вы вполне можете прийти самостоятельно – для этого достаточно просто аккуратно все подсчитать. Но сначала нужно найти ответы на парочку вопросов. Во-первых, можно ли доказать соседство π и 3, не проводя специальных измерений? Во-вторых, существует ли для π какое-нибудь более удобоваримое представление (скажем, формула или простая дробь)?

На первый вопрос можно ответить, нарисовав окружность с радиусом 1, площадь который, как нам уже известно, равна π1² = π. На рисунке чуть ниже этот круг вписан в квадрат с длиной сторон, равной 2. Так как площадь квадрата очевидно больше площади круга, получаем, что π должно быть меньше 4.

С другой стороны в круг можно вписать шестиугольник так чтобы все шесть его - фото 345

С другой стороны, в круг можно вписать шестиугольник – так, чтобы все шесть его вершин были расположены на окружности, причем на равном расстоянии друг от друга. Каким будет периметр этого шестиугольника? Разобьем его на шесть треугольников, величина центрального угла каждого из которых составит 360°/6 = 60°, а две стороны будут радиусами круга с длиной, равной 1 (что говорит о том, что все эти треугольники – равнобедренные). Согласно теореме о равнобедренных треугольниках, оставшиеся два угла должны быть равны между собой, то есть величина каждого составит 120°/2 = 60° – так мы узнаем, что треугольники не просто равнобедренные, но еще и равносторонние – с длиной сторон 1. Значит, площадь шестиугольника равна 6. А так как она должна быть меньше длины окружности в 2π (потому что круг очевидно больше шестиугольника), получаем 6 < 2π и π > 3. Так мы и приходим к желаемому

3 < π < 4
Отступление

Можно на этом не останавливаться и попытаться еще сильнее сократить возможный разброс – для этого нам понадобятся полигоны с бóльшим количеством сторон. Так, если мы окружим единичный круг не квадратом, а шестиугольником, у нас получится доказать, что π < 2√ 3 = 3,46….

Еще раз шестиугольник можно разделить на 6 равносторонних треугольников - фото 346

Еще раз: шестиугольник можно разделить на 6 равносторонних треугольников, каждый из них в свою очередь разбивается на 2 прямоугольных. Если длина меньшего катета равна x , длина гипотенузы составит 2 x . По теореме Пифагора x ² + 1 = (2 x )². Поиски x приводят нас к x = 1/√ 3 . Значит, периметр шестиугольника составит 12/√ 3 = 4√ 3 , а так как он должен быть больше длины окружности (2π ) , то π должно быть меньше 2√ 3 (смотрите-ка, мы пришли к тому же заключению, что и при сравнении площади окружности с площадью шестиугольника).

Следуя той же логике чередования «вписанных» и «описывающих» полигонов, состоящих последовательно из 12, 24, 48 и 96 сторон, один из величайших древнегреческих математиков Архимед сумел доказать, что 3,14103 < π < 3,14271, что сводится к немногим более простой формуле

Магия математики Как найти x и зачем это нужно - изображение 347

Есть несколько простых дробей, которые более-менее соотносятся со значением π. Например,

Лично мне больше всего нравится последняя И не только потому что она - фото 348

Лично мне больше всего нравится последняя. И не только потому, что она совпадает с π в 6 из всего множества знаков после запятой, но и потому, что использует первые три нечетных числа (причем по два раза и по порядку!): две единицы, две тройки и две пятерки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Артур Бенджамин читать все книги автора по порядку

Артур Бенджамин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия математики: Как найти x и зачем это нужно отзывы


Отзывы читателей о книге Магия математики: Как найти x и зачем это нужно, автор: Артур Бенджамин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x