Брюс Блумберг - ЖироГен. Почему мы едим все меньше, тренируемся все больше, а худеем все хуже
- Название:ЖироГен. Почему мы едим все меньше, тренируемся все больше, а худеем все хуже
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб
- ISBN:978-5-00116-265-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брюс Блумберг - ЖироГен. Почему мы едим все меньше, тренируемся все больше, а худеем все хуже краткое содержание
Как токсичные примеси связаны с мутацией клеток?
Что делать, если диета и спорт не помогают сбросить вес?
Почему мы неумолимо толстеем?
Многие считают ожирение болезнью безвольных. Казалось бы, что может быть проще: забудьте дорогу в кондитерскую, запишитесь в фитнес-клуб – и лишние килограммы растают, как прошлогодний снег.
Увы, это работает далеко не всегда. Избыточный вес может появиться буквально из воздуха – из воздуха, отравленного химическими соединениями, разрушающими эндокринную систему и заставляющими нас полнеть. Жирогены находятся повсюду: в земле и воде, пище, мебели, посуде, косметике, детских игрушках и даже в лекарствах!
Но не спешите паниковать! Защититься от их влияния под силу каждому. Просто следуйте советам и рекомендациям во второй части книги. Вскоре ваше самочувствие заметно улучшится, и вы наконец обретете желанную форму!
ЖироГен. Почему мы едим все меньше, тренируемся все больше, а худеем все хуже - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вы недоумеваете, что же я хочу всем этим сказать? Немного терпения! Прежде чем углубиться в этот вопрос (и понять, что к чему), давайте пробежимся по основам генетики.
Открытие ДНК ознаменовало новую эру
ХХ век – это, без сомнения, век генома благодаря открытию ДНК (дезоксирибонуклеиновой кислоты) – генетического материала, который лежит в основе всего живого на Земле. Но история генома, которой уже посвящено несколько книг [26], началась гораздо раньше.
В XIX веке жил австрийский монах-августинец и страстный садовник Грегор Иоганн Мендель. Его тщательные эксперименты предсказали существование дискретного характера наследственности – именно благодаря ему у нас появляются особые фамильные черты. За это Мендель был назван отцом генетики. Выращивая горох в огороде аббатства Святого Томаша, он заметил интересные закономерности скрещивания нескольких разновидностей этого растения и доказал, что можно предсказать передачу определенных признаков по наследству. Это происходит благодаря факторам, которые позже будут названы генами. Мендель показал, что некоторые признаки передаются из поколения в поколение, и индивидуальные черты потомства зависят от обоих родителей. Далее он обнаружил, что у генов могут быть вариации, в результате чего появляются доминантные и рецессивные признаки. Работа Менделя не была по достоинству оценена при жизни. Но в начале 1900-х годов генетики (в частности, Томас Хант Морган) вновь обратились к его трудам, и менделевская генетика прославилась на весь мир.
В начале XX века все уже знали о том, что существуют единицы наследственности, называемые генами, но какой тип молекулы (ДНК, РНК или белок) служил генетическим материалом, оставалось загадкой. В 1940-х годах Освальд Эйвери из Института Рокфеллера (современный Университет Рокфеллера) убедительно продемонстрировал, что наследственным материалом является именно ДНК, а не белок.
Ученые выяснили, что природная ДНК содержит фосфат, дезоксирибозу и азотсодержащие основания (пурины и пиримидины), но ее структура и способ воспроизводства еще не были точно известны. Следующий большой прорыв сделал австрийский химик Эрвин Чаргафф – он открыл принцип химического соединения составных частей ДНК. Он доказал, что во всякой ДНК естественного происхождения количество пуриновых оснований (цитозин и гуанин: Ц и Г) и пиримидиновых оснований (аденозин и тимидин: А и Т) примерно равны. То есть А=Т, Г=Ц. Это открытие получило название первого правила Чаргаффа. Почему все происходило именно так, не удавалось объяснить до тех пор, пока Фрэнсис Крик и Джеймс Уотсон из Кембриджского университета совместно с Морисом Уилкинсом из Королевского колледжа Лондона не вывели структуру ДНК [27].
В середине 1950-х годов Уотсон, Крик и Уилкинс получили за это открытие Нобелевскую премию по физиологии (а в 1962 году и по медицине). Но их работа основывалась на трудах многих других ученых, в том числе Розалинды Франклин, тоже из Королевского колледжа, – именно благодаря ее рентгеновским снимкам Уотсон и Крик смогли воскликнуть «Эврика!». Они выяснили, что структура ДНК представляла собой антипараллельную двойную спираль. У нее имелось азотистое основание, скрепленное связями между пятым и третьим атомами углерода соответствующей дезоксирибозы. Пуриновые и пиримидиновые основания вытягиваются из этой спирали, и две ее нити скрепляются вместе водородными связями между противоположными основаниями А и Т или Г и Ц.
Представьте, что у вас в руках резиновая лестница. Возьмитесь за ее концы и скрутите – у вас получится примерный макет базовой структуры ДНК (не точный, но достаточно похожий). В этой модели ступенями лестницы служат парные основания. Эта структура сразу же подсказала принцип копирования молекулы ДНК: каждая ее нить может служить образцом для создания новой нити. Механизм того, как это происходит, был выведен Мэттом Мезельсоном и Франклином Сталом из Калифорнийского технологического института. В 1958 году они доказали, что двойная спираль ДНК раскручивается и служит шаблоном для новой комплементарной нити. Таким образом, ДНК может быть точно скопирована, без изменения ее структуры, за исключением случайных ошибок или мутаций. Код ДНК читается как последовательность нуклеотидов А, Ц, Г и Т, которые составляют каждую ее нить. Последовательность нуклеотидов является основным структурным элементом генов, которые по отдельности или в сочетании определяют ваши индивидуальные признаки, от цвета волос до предрасположенности к тем или иным заболеваниям.
Статья Уотсона и Крика в журнале Nature буквально перевернула мир естественных наук и ознаменована наступление эры молекулярной генетики – все ведущие умы погрузились в изучение базовой последовательности ДНК. Предполагалось, что, раз мы раскрыли тайну генома человека, можно будет понять, как работает организм, какие гены отвечают за наши индивидуальные особенности, предрасположенность к болезням и т. д. В 1980 году Уолтер Гилберт из Гарварда и Фред Сэнгер из Кембриджа разделили Нобелевскую премию по химии за создание первой надежной методики определения последовательностей ДНК. Это открыло дверь в мир секвенирования геномов вирусов и бактерий.
Секвенирование генома шло семимильными шагами. В 1978 году была открыта первая геномная последовательность мелкого вируса-бактериофага ΦX174 (5386 оснований, кодирующих одиннадцать генов), который инфицирует бактерии. А в 2003 году завершилось изучение последовательности человеческого генома, состоящего примерно из трех миллиардов пар оснований. Ученые продолжают работу: они хотят определить, какие последовательности ДНК представляют большую или меньшую опасность для развития различных заболеваний. Еще многое предстоит узнать о том, как функционируют гены и как они взаимодействуют с окружающей средой. С появлением более совершенных технологий за последние десять лет расходы на определение последовательности ДНК значительно снизились: в 2008 году они составляли около десяти миллионов долларов, а сегодня цена упала примерно до тысячи (на первый геном человека было затрачено около 2,7 миллиарда долларов). Это произошло во многом благодаря проекту «Геном ценой в $1000», финансируемому национальными институтами здравоохранения США.
ДНК и болезни
Мы привыкли думать, что индивидуальная последовательность ДНК почти полностью отвечает за здоровье и хорошее самочувствие – даже большинство медиков считают именно так.
Но последовательность ДНК – это лишь часть головоломки. Она скорее сообщает об опасности и предсказывает вероятное развитие событий, а не выносит приговор. Конечно, у каждого может произойти мутация гена, безжалостно поставив окончательный диагноз (например, гемофилия, муковисцидоз или мышечная дистрофия). Но это редкость, потому что большинство мутаций являются рецессивными. То есть для развития болезни необходимы две копии мутировавшего гена, по одной от каждого родителя, за исключением генов, закодированных в Х-хромосоме у мужчин [28].
Читать дальшеИнтервал:
Закладка: