Владимир Скулачёв - Жизнь без старости
- Название:Жизнь без старости
- Автор:
- Жанр:
- Издательство:МГУ им. М.В.Ломоносова
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Скулачёв - Жизнь без старости краткое содержание
Не исключено, что это только начало пути, и уже в ближайшие годы будет создан препарат, предохраняющий от старости. Чтобы дожить до этого будущего, авторы предлагают 7 принципов, выведенных на основе биологического проникновения в глубинную природу человека. Каждый из принципов понятен и достаточно легко выполним, если вами движет любовь к жизни и своим близким. Следуя этим принципам, можно замедлить генетическую программу старения и заставить свой организм думать, что ему рано стареть.
Прочитайте, приблизьтесь к фонтану молодости — и живите долго!
Жизнь без старости - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Образовавшись одним из этих двух способов, O2־· атакует кардиолипин, а продукт реакции — окисленный кардиолипин — уже не может удерживать цитохром с на поверхности внутренней мембраны митохондрий, и тот отщепляется от мембраны и переходит в межмембранное пространство митохондрий. Туда же освобождаются продукты окисления кардиолипина. В результате взаимодействия с этими продуктами цитохром с приобретает кардиолипин־ пероксидазную активность, что в свою очередь ускоряет окисление новых порций кардиолипина и ведет к выходу из мембраны дополнительных количеств цитохрома с [140,141].
В межмембранном пространстве находится белок p66shc, уже упомянутый выше. Он также комплексуется с растворимым цитохромом с. Комплекс цитохрома с и p66shc начинает восстанавливать O2 до O2־·, что в свою очередь увеличивает продукцию O2־· митохондриями.
По данным, полученным в нашей группе М.Ю. Высоких [303], у прогерических мышей с мутантной митохондриальной ДНК־ полимеразой уменьшается степень ненасыщенности жирнокислотных остатков кардиолипина (вероятно, как способ защиты от окислительного стресса) и этот эффект снимается антиоксидантом SkQ1, адресованным в митохондрии и, тем самым, ослабляющим окислительный стресс в органеллах мутанта.
В соответствии с логикой, изложенной выше, максимальная продолжительность жизни млекопитающих оказалась в обратной зависимости от количества двойных связей и способности к перекисному окислению фосфолипидов печеночных митохондрий [253].
Другой пример того же рода дало сравнение пчелиной матки («царицы») и рабочей пчелы (продолжительность жизни измеряются соответственно годами в первом случае и десятками дней — во втором [277]). У рабочих пчел оказалось гораздо больше полиненасыщенных жирных кислот, подверженных перекисному окислению, а у маток — насыщенных, устойчивых к этой опасности [116]. В грудном отделе рабочих пчел содержание цитохрома с в расчете на цитохромоксидазу было в 15 раз выше чем у матки, что могло бы способствовать у рабочих перекисному окислению кардиолипина и генерации O2־· этим цитохромом [62]. Наконец, количество белка-антиоксиданта, ювенильного гормона пчел вителлогенина было намного выше у маток [63].
6) Митохондриальные АФК вызывают апоптоз, тем самым способствуя уменьшению «клеточности» органов и тканей.На сегодня накоплен обширный экспериментальный материал о том, как АФК участвуют в запрограммированной смерти клетки. В этом смысле особенно важны митохондриальные АФК. Мутантные клеточные линии, лишенные митохондриальной ДНК, а значит и возможности образовывать АФК в дыхательной цепи, чрезвычайно устойчивы к апоптозу. Митохондриальный антиоксидант SkQ 1 блокирует апоптоз клеток в культуре, вызванный небольшой добавкой перекиси водорода. Сама добавленная перекись быстро разлагается клеточными ферментами, но затем, через 1–2 часа наступает мощный всплеск генерации эндогенных АФК, который как раз и снимается SkQ1. Здесь мы имеем дело с явлением, обнаруженным нашим сотрудником Д.Б. Зоровым, а именно образованием АФК под действием других АФК [403]. Показано также снятие некроза клеток in vitro посредством SkQ1 [328]. Кроме того, обнаружено предотвращение при помощи SkQ 1 возрастной активации апоптоза крысиных фибробластов [329].
Таким образом, есть веские основания полагать, что именно митохондриальные АФК вызывают уменьшение количества клеток в органах и тканях стареющих организмов.
II.6.6 Программа старения: рабочая гипотеза
II.6.6.1 «Большие биологические часы»
Наши часы идут плохо, регулятор нашей жизни не соответствует своему назначению; это — дешевенький маятник, сделанный на скорую руку… Мы не приложили стараний к его обработке.
Н.А. Умов [445]По нашему мнению, старение есть последний этап онтогенеза — индивидуального развития организма. Но если это так, то старение, как и онтогенез в целом, должно управляться «большими биологическими часами». Их существование было постулировано В.М. Дильманом и вслед за ним — А. Комфортом [75,60,416]. Поразительно, что, несмотря на колоссальные успехи молекулярной биологии и генетики последних десятилетий, мы по-прежнему ничего не знаем об устройстве этих «часов». Более того, мы даже не догадываемся, где они находятся. Наши знания об измерении времени живыми существами пока ограничиваются в основном суточным ритмом. Этот ритм обусловливается циклическими биохимическими реакциями, происходящими в эпифизе (у птиц) или в супрахиазматическом ядре гипоталамуса (у млекопитающих). Как в том, так и в другом случае измерение времени основывается на колебаниях концентраций определенных веществ в эпифизе или супрахиазматическом ядре, что вызывает затем циклическое изменение уровня в крови определенных гормонов, прежде всего мелатонина. Интересно, что с возрастом средняя концентрация мелатонина в крови и амплитуда его суточных колебаний неуклонно уменьшаются, причем этот процесс у людей начинается с 7 лет, являясь, по-видимому, одним из самых первых признаков старения [8]. По данным В.Н. Гладышева и сотрудников [152], у голого землекопа обнаруживаются большие аномалии в первичной структуре рецепторов мелатонина.
Однако измерение времени в часовой шкале, как это делает циркадный механизм, вряд ли годится, чтобы считать годы [22]. Здесь уместней было бы отслеживать, например, число лунных циклов, чтобы, в частности, регулировать периодичность менструального цикла у женщин [323].
В нашей повседневной жизни мы сверяем свои часы с эталоном — устройством, основанным на скорости радиоактивного распада. Невероятно, чтобы такой механизм использовали живые организмы. Однако в них происходят кое-какие другие спонтанные химические процессы, которые могли бы лежать в основе механизма, измеряющего годы.
Такова, например, L→D изомеризация аминокислот в долгоживущих белках. У китов описаны кристаллины — белки хрусталика, возраст которых соизмерим с максимальным возрастом самого животного, т. е. порядка двух веков [101]. Исходно все аминокислоты в кристаллине являются L-изомерами. С годами происходит самопроизвольная изомеризация L-аминокислот в их D-изомеры. Для аспартата она наиболее быстрая (около 2 % за 10 лет). Биологический счетчик лет можно было бы сделать из белка типа кристаллина и какого-то устройства, измеряющего содержание D-аспартата в этом белке. У нас с вами есть, кроме кристаллинов, еще ряд белков, образующихся раз и навсегда. Подобные белки найдены в зубной эмали, белом веществе мозга, аорте, артериях, коже, хрящах, костях, сухожилиях. Таков также белок эластин [314].
Дезамидирование аспарагина и глютамина в белках также может быть спонтанным. В этом случае показано, что скорость такого процесса зависит от конформации белка, которая в свою очередь определяется последовательностью аминокислотных остатков, из которых построен белок. При этом скорость спонтанного дезамидирования варьирует от нескольких часов до 100 лет. Н.И. и А.Б.
Читать дальшеИнтервал:
Закладка: