Владимир Скулачёв - Жизнь без старости

Тут можно читать онлайн Владимир Скулачёв - Жизнь без старости - бесплатно полную версию книги (целиком) без сокращений. Жанр: Здоровье, издательство МГУ им. М.В.Ломоносова, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Скулачёв - Жизнь без старости краткое содержание

Жизнь без старости - описание и краткое содержание, автор Владимир Скулачёв, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Академик РАН Владимир Скулачев и ведущие российские биохимики, проведя многолетние эксперименты, сделали выдающееся научное открытие: старение — это программа, закодированная в генах. Ее можно расшифровать и отменить, ведь недаром обнаружен зверек, который никогда не стареет. На основе сенсационного исследования авторами книги было создано лекарство, которое лечит одну из старческих болезней, ранее считавшуюся неизлечимой.
Не исключено, что это только начало пути, и уже в ближайшие годы будет создан препарат, предохраняющий от старости. Чтобы дожить до этого будущего, авторы предлагают 7 принципов, выведенных на основе биологического проникновения в глубинную природу человека. Каждый из принципов понятен и достаточно легко выполним, если вами движет любовь к жизни и своим близким. Следуя этим принципам, можно замедлить генетическую программу старения и заставить свой организм думать, что ему рано стареть.
Прочитайте, приблизьтесь к фонтану молодости — и живите долго!

Жизнь без старости - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнь без старости - читать книгу онлайн бесплатно, автор Владимир Скулачёв
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Робинсоны, посвятившие описанию этого явления ряд статей и специальную книгу [281–284], полагают, что в аминокислотной последовательности белка скрыты «молекулярные часы», неумолимо отсчитывающие срок его жизни.

Еще одним претендентом на часовой механизм может быть процесс спонтанного гликирования белков. В его основе лежит химическая реакция сахара с ε-аминогрупой остатка аминокислоты лизина в различных белках. В результате дальнейших превращений, развязанных этим процессом (в нем участвуют АФК [235,52,51]), получается пентозидин (продукт соединения лизина с аргинином), карбоксиметиллизин и карбоксиэтиллизин. Все эти вещества объединяются английским сокращением AGE (advanced glycation end products, в переводе «конечные продукты гликирования») [314]. Сиван и сотрудники показали, что уровень AGE в эластине межпозвоночных дисков при старении возрастает в той же пропорции, что и количество D-аспартата [314].

Есть одно существенное для нас отличие между, с одной стороны, D-аспартатом (и продуктами дезамидирования) и AGE, с другой. Для AGE существуют специальные рецепторы (RAGE) [13,274], т. е. наш организм умеет измерять уровень AGE. Поскольку этот уровень линейно зависит от возраста, то с помощью RAGE организм мог бы отслеживать свой возраст [12]. В общем-то, сказанного достаточно, чтобы представить себе биологические часы, измеряющие годы. Для этого надо взять 1) белок типа кристаллинов или эластина, время жизни которого соизмеримо с продолжительностью нашей жизни и 2) RAGE, специфичный к какому-нибудь из AGE в этом белке. Далее необходимо, чтобы комплекс RAGE и белка, содержащего AGE, запускал апоптоз, как это, по-видимому, происходит при активации апоптоза при бактериальном заражении, когда участвует один из рецепторов, принадлежащих к группе RAGE [274]. Если все события, перечисленные выше, происходят в клетках, производящих «первичный ювенильный гормон», и эти клетки, наподобие нервной, не умеют размножаться, то с возрастом их популяция будет уменьшаться, что повлечет за собой снижение уровня ювенильного гормона в организме.

Данная схема предполагает, что такие значительные отрезки времени, как месяцы и годы, измеряются не одной клеткой, а большой их группой, особым морфологическим образованием типа супрахиазматического ядра гипоталамуса (или эпифиза, вырабатывающего мелатонин — гормон суточного ритма). Кстати, как мы уже отмечали выше, уровень мелатонина, антиоксиданта и индуктора целой группы ферментов антиоксидантной системы клетки, медленно, но верно снижается при старении, что и положено ювенильному гормону. Более того, мелатонин обладает геропротекторным эффектом [406,262,3,143]. Другой интригующий поворот того же сюжета — способность некоторых RAGE связывать β-амилоид, белок, играющий ключевую роль в болезни Альцгеймера) [13,274]. Если подобное свойство присуще также и тем RAGE, что служат одной из деталей “больших биологических часов”, то эту страшную болезнь можно отнести к прогериям, т. е. случаям ускоренного старения организма, когда “большие часы” начинают спешить [436]. К сожалению, уровень наших знаний о работе «больших часов» еще слишком низок, чтобы вмешаться в их работу и таким способом изменить сбившийся отсчет времени.

Следует подчеркнуть, что первичный ювенильный гормон по всей вероятности запускает гормональный каскад, составленный из вторичных, третичных и т. д. ювенильных гормонов, которые умножают сигнал первичного гормона и передают этот сигнал тканям и органам. Совсем недавно был выяснен механизм контроля старения одним из таких вторичных ювенильных гормонов, а именно гонадотропин-рилизинг гормоном (ГРГ). В группе американского клеточного биолога Д. Кэя [399] было установлено, что старение сопровождается увеличением количества клеток микроглии (играющих роль мозговых фагоцитов) в одном из отделов гипоталамуса и активацией транскрипционного фактора NF kB в этих клетках. Под действием NF kB микроглия начинает продуцировать фактор некроза опухолей (ФНО), который атакует локализованные в том же отделе мозга нейроны, ответственные за синтез ГРГ. В нейронах есть свой NF kB, который активируется под действием ФНО. Эта активация, в свою очередь, стимулирует метилирование промотора гена ГРГ, что ведет к выключению синтеза ГРГ нейронами. А без ГРГ гипофиз не образует третичный ювенильный гормон — гонадотропин, требующийся для синтеза половых гормонов и еще целого ряда систем, действующих в молодом организме, но ослабляющихся при старении. Блокируя регуляторную цепочку, описанную выше, авторам удалось продлить жизнь мышей и затормозить развитие таких признаков старения, как саркопения, остеопороз, истончение кожи, появление сшивок в ткани сухожилий и ослабление памяти. Частичного торможения развития перечисленных признаков можно было достичь подкожным введением ГРГ старым мышам. Примечательно, что нейроны, образующие вторичный ювенильный гормон ГРГ, локализованы в гипоталамусе, т. е. там же, где супрахиазматическое ядро с его «часами» циркадного ритма.

II.6.6.2 Запрограммированное старение организма — многостадийный процесс

Ввиду неясности природы ювенильного гормона на сегодня остается открытым вопрос, каким именно образом этот гормон сдерживает нарастание уровня АФК в митохондриях. Вряд ли мы имеем здесь дело с прямым антиоксидантным действием гормона. Любой гормон занимает слишком высокое положение в иерархии управленческих устройств организма, чтобы “лично” участвовать в регуляции того или иного процесса. Скорее речь должна идти об еще одном белке — рецепторе, который связывает ювенильный гормон и множит передаваемый им сигнал.

Еще более неопределенной остается проблема передачи сигнала старения внутри клетки периферической ткани — от клеточной поверхности, непосредственно взаимодействующей с ювенильным гормоном, к митохондриям. Это может быть, например, сам ювенильный гормон, если он проникает в клетку и достигает митохондрий. Есть указания, что, например, мелатонин концентрируется в митохондриях [102,201]. Однако неясно, как влияет мелатонин на уровень митохондриальных АФК. Это влияние, если и есть, вряд ли сводится к его способности действовать в качестве антиоксиданта: мелатонина просто не хватит, чтобы вызвать измеримое снижение АФК. Значит, надо думать о каком-то рецепторе мелатонина в митохондриях, передающем сигнал к снижению уровня АФК [23]. Такое снижение может быть результатом замедления образования митохондриальных АФК либо ускорения их обезвреживания. В пользу первого варианта говорит тот факт, что обнаружена отрицательная корреляция продолжительности жизни и скорости генерации АФК при обратном переносе электронов через комплекс I дыхательной цепи (см. выше рис. II.6.5.2). По нашим данным [318,164,320] и результатам Л. Шу-сена [198,197], генерация АФК при обратном переносе электронов пороговым образом зависит от величины мембранного потенциала (Δψ) на митохондриях. Так, снижение Δψ на 15 % ведет к десятикратному уменьшению генерации АФК, причем эффект не зависит от того, каким именно образом достигнуто снижение Δψ: добавлением АДФ (то есть включением окислительного фосфорилирования), малой дозой разобщителя-протонофора или ингибитором дыхания. Пороговая зависимость генерации АФК от Δψ была впоследствии подтверждена в других лабораториях [372,342]. Основываясь на этих наблюдениях, мы можем предположить, что при старении происходит повышение Δψ в митохондриях, и именно это обстоятельство увеличивает генерацию АФК при обратном переносе электронов [24]. В свою очередь, повышение Δψ может быть результатом уменьшения утечки Н+ через мембрану митохондрий. Этот процесс катализируется разобщающими белками и митохондриальными переносчиками анионов, облегчающими электрофорез анионов жирных кислот, то есть их движение изнутри митохондрий наружу (см. обзор [320]). Снаружи анионы жирных кислот протонируются и возвращаются назад в митохондриальный матрикс, неся протоны (разобщающий «жирнокислотный цикл» [317]). Активность жирнокислотного цикла может регулироваться либо белками-переносчиками анионов жирных кислот, либо концентрацией этих кислот в цитозоле. Соответственно, рост Δψ при старении может быть обусловлен либо снижением внутриклеточного уровня свободных жирных кислот, либо уменьшением активности белков-переносчиков (например, если предположить, что мелатонин как-то активирует перенос анионов жирных кислот этими белками).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Скулачёв читать все книги автора по порядку

Владимир Скулачёв - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь без старости отзывы


Отзывы читателей о книге Жизнь без старости, автор: Владимир Скулачёв. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Александр
19 октября 2023 в 18:57
Важно чтобы государство финансировало подобные исследования, для ученых работа в своей стране главное условие успеха. Не нужен исход когда, только уехав в США и Англию на ши ученые получают Нобелевские премии. То что происходит сегодня в стране не приемлемо для цивилизованного госудаства
x