Владимир Скулачёв - Жизнь без старости
- Название:Жизнь без старости
- Автор:
- Жанр:
- Издательство:МГУ им. М.В.Ломоносова
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Скулачёв - Жизнь без старости краткое содержание
Не исключено, что это только начало пути, и уже в ближайшие годы будет создан препарат, предохраняющий от старости. Чтобы дожить до этого будущего, авторы предлагают 7 принципов, выведенных на основе биологического проникновения в глубинную природу человека. Каждый из принципов понятен и достаточно легко выполним, если вами движет любовь к жизни и своим близким. Следуя этим принципам, можно замедлить генетическую программу старения и заставить свой организм думать, что ему рано стареть.
Прочитайте, приблизьтесь к фонтану молодости — и живите долго!
Жизнь без старости - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
За финансовой поддержкой этой громадной, долгой и рискованной работы мы решили обратиться к О.В. Дерипаске, тогда самому богатому бизнесмену в России, благо сам он — выпускник физфака МГУ, нашей Alma Mater, и член попечительского совета университета. Один из авторов книги (В.П.С.) встретился с Олегом Владимировичем в конце 2003 г и сказал ему, что замедлить старение мы попытаемся, но успех не гарантируем. Однако в любом случае «от заусенец мы, пожалуй, в конце концов, поможем». О.В. согласился нас поддержать, хотя речь шла о сумме более чем внушительной (как сказал Марк Аврелий, «каждый стоит столько, сколько стоит то, о чем он хлопочет»). Наши работы по SkQ финансировались в 2003–2005 гг. за счет гранта благотворительного фонда «Паритет» (позже «Вольное дело») О. В. Дерипаски, а с 2005 по 2008 г. — им же, но уже как инвестиционный проект, получивший у помощников олигарха, не одобрявших рискованное решение их шефа, обидное прозвище «дохлая крыса». За эти годы на исследования было потрачено около 16 млн. долларов, что сделало возможным проведение широкого круга экспериментов — от синтеза новых веществ до их испытаний in vivo на различных живых организмах. В проекте были задействованы сотрудники Института физико-химической биологии им. А.Н. Белозерского и ряда факультетов МГУ, а также более 30 других исследовательских институтов в России, Швеции, Германии, Австрии, США и на Украине.
Осенью 2008 г. О.В. Дерипаска не смог дальше поддерживать никакие рискованные проекты, и в частности наш “мегапроект”, из-за разразившегося в это время экономического кризиса. В течение 7 месяцев проект, в котором к тому времени было занято на полный или частичный рабочий день около 300 человек, не имел никакого финансирования. Проблему, как всегда в подобных случаях в МГУ, решил наш ректор академик В.А. Садовничий. Он взял на себя руководство математической группой проекта и обратился за помощью к генеральному директору госкорпорации РОСНАНО А.Б. Чубайсу, который для начала представил В.П.С. своему знакомому — А.В. Чикунову, помогшему нам продержаться во время длительной процедуры рассмотрения заявки на инвестиционный проект РОСНАНО. В результате корпорация одобрила проект, и с осени 2010 г. по настоящее время мы финансируемся этой организацией на равных паях с новым, уже третьим по счету частным инвестором, решившимся вложить свои средства в нашу разработку.
II.7.2 Результаты "мегапроекта". SkQ как геропротектор
По существу первым нашим результатом был синтез группы совершенно новых соединений, отсутствующих в живой природе и лабораторных коллекциях химиков. Это были, прежде всего, вещества, состоящие из пластохинона и проникающих катионов Sk+. В качестве последних решено было использовать децилтрифенилфосфоний и децилродамин. В обоих случаях децильный остаток служил связкой (линкером) между пластохиноном (Q) и (Sk+). Здесь решающую роль сыграли замечательные химики-синтетики Института физикохимической биологии МГУ (Г.А. Коршунова и Н.В. Сумбатян) и Института биоорганической химии РАН (Е.С. Ефремов). Некоторые из веществ, впервые синтезированных этой командой, показаны на рис. II.7.2.1 (метод синтеза см. [409]).

Рис. II.7.2.1Формулы восстановленных SkQ1 и SkQR1, а также их «безхиноновых» аналогов — C12TPP и C12R1.
Результаты исследований SkQ, проведенных нами в течении 2004–2013 годов, можно суммировать следующим образом.
1) Прежде всего, оказалось, что SkQ1 имеет низкую растворимость как в воде, так и в углеводородах, но отлично растворяется в октаноле. Коэффициент распределения SkQ1 в системе октанол/вода приближался к 10 4, что свидетельствовало о его очень высоком сродстве к мембранным структурам (В.Н. Ташлицкий и соавт.) [287,329].
2) Опыты на плоской бислойной фосфолипидной мембране (БЛМ) показали, что катион SkQ1 отлично проникает через такую мембрану (И.И. Северина, Ю.Н. Антоненко и соавт.) [409,328] (рис. II.7.2.2).

Рис. II.7.2.2Генерация диффузного электрического потенциала (Δψ) на БЛМ за счет градиента концентрации проникающих катионов. В одном отсеке ячейки концентрация таких катионов была 1х10 бM.
Концентрация в другом отсеке указана на абсциссе. Данные И.И. Севериной [409].
3) В БЛМ, липосомах, мицеллах и митохондриях SkQ1 выступал как чрезвычайно активный антиоксидант (М.Ю. Высоких, Ю.Н. Антоненко) [409,328,329] (рис. II.7.2.3). Перекисное окисление липидов митохондрий, начинающееся с разрушения кардиолипина, резко тормозилось наномолярными концентрациями SkQ1 (М.Ю. Высоких) [409,328,329] (рис. II.7.2.4).
4) Энергизация митохондрий in vitro вела к накоплению в них SkQ1 (М.С. Мунтян) [409].

Рис. II.7.2.3Антиоксидантная (нижний рисунок) и прооксидантная (верхний рисунок) активности SkQ1, SkQ3 и MitoQ на митохондриях сердца in vitro. Прооксидантную активность измеряли по образованию перекиси водорода, антиоксидантную — по торможению образования малонового диальдегида (МДА) в митохондриях. Отрезки прямых под абсциссой показывают размер «окна» между концентрациями испытуемых хинонов, вызывающими 20 % анти- и прооксидантные эффекты. Данные М.Ю. Высоких [409].

Рис. II.7.2.4100 nM SkQ1 предотвращает перекисное окисление кардиолипина в митохондриях сердца крысы in vitro. Перекисное окисление вызывали добавлением ионов железа (Fe 2+) и аскорбата (аск). А — хромаатограммы фосфолипидов митохондрий. Кардиолипин обозначен номером 5. Б — содержание кардиолипина в % от общего количества митохондриальных фосфолипидов. Данные М.Ю. Высоких [409,315].
5) SkQ1 восстанавливался дыхательной цепью митохондрий в центре i комплекса III (подобно другим производным пластохинона [50,114]). Этот процесс блокировался ингибитором центра i антимицином А. Окисление SkQ1H2 в центре о происходит гораздо медленнее, чем восстановление SkQ1 в центре i. Это позволило нам заключить, что SkQH2 служит возобновляемым антиоксидантом, существующим в митохондриях преимущественно в своей активной (восстановленной) форме (М.Ю. Высоких и соавт.) [409,329]].
6) В наномолярных концентрациях SkQ1 проявлял антиоксидантное действие за счет пластохиноновой части, и его аналог без пластохинона (С12ТРР, см. рис. II.7.2.1) оказывался неактивным. Повышение концентрации SkQ1 приводило к появлению другого антиоксидантного эффекта, который воспроизводится также с С12ТРР, но требовал присутствия свободных жирных кислот.Было показано, что SkQ1 и С12ТРР могут служить переносчиками анионов жирных кислот, резко усиливая их разобщающее действие на митохондрии (Ф.Ф. Северин и соавт.) [301,315].
Читать дальшеИнтервал:
Закладка: