Владимир Скулачёв - Жизнь без старости
- Название:Жизнь без старости
- Автор:
- Жанр:
- Издательство:МГУ им. М.В.Ломоносова
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Скулачёв - Жизнь без старости краткое содержание
Не исключено, что это только начало пути, и уже в ближайшие годы будет создан препарат, предохраняющий от старости. Чтобы дожить до этого будущего, авторы предлагают 7 принципов, выведенных на основе биологического проникновения в глубинную природу человека. Каждый из принципов понятен и достаточно легко выполним, если вами движет любовь к жизни и своим близким. Следуя этим принципам, можно замедлить генетическую программу старения и заставить свой организм думать, что ему рано стареть.
Прочитайте, приблизьтесь к фонтану молодости — и живите долго!
Жизнь без старости - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Примечательно, что вариабельность возрастных зависимостей практически не зависит от положения вида на эволюционном дереве:
она присуща представителям различных классов как позвоночных, так и беспозвоночных животных, а также растений. К сожалению, в «списке Джонса» отсутствует голый землекоп. По нему не опубликовано сведений по возрастной динамике плодовитости, а ордината в единственном графике смертности как функции от возраста откалибрована по мнению Джонса и его коллег [139], не совсем понятным способом. В то же время, нет сомнений, что этот мелкий грызун живет несравнимо дольше, чем мышь (более 32 лет), не болеет раком, сердечно-сосудистыми недугами, диабетом и другими патологиями, смертельными для обычных млекопитающих. Несомненное практическое преимущество голого землекопа по сравнению с нестареющими видами из «списка Джонса» в том, что это небольшое млекопитающее, легко переносящее жизнь в виварии.
Еще один важный результат, выявленный Джонсом и сотрудниками, — разнообразие списка нестареющих видов по сложности устройства их организмов и максимальной продолжительности жизни. При этом особенно важно, что среди нестареющих есть примеры существ, плодовитость которых заметно растет с возрастом, т. е. они живут не только долгой, но и в прямом смысле плодотворной жизнью.
В целом работа О. Джонса и др. — новый сильнейший довод в пользу мысли о необязательности старения для живых организмов. Она отлично согласуется с концепцией старения как факультативной биологической программы, используемой видами для ускорения их эволюции в тех условиях существования, которые требуют такого ускорения.
Предметный указатель
AGE, 173
рецепторы. См. RAGE
age-1. См. ген age-1
AIF, 281
Apaf-1, 138, 282
Apus melba, 325
Arabidopsis thaliana, 19, 21, 124, 125, 126, 249
Arctica islandica, 33
Atriplex acanthocarpa, 325
Bacillus subtilis, 119 Bax, 282 Bcl-2, 282 Bcl-XL, 282
bd-хинолоксидаза, 303
Borderea pyrenaiea, 155 C UR1, 190, 226, 227, 236, 242
C 12TPP, 190, 194, 231
Capreolus capreolus, 325
Caenorhabditis elegans, 48, 115, 221
Cistus clusii, 155
Ctenomus, 323, 324
DAF-16, 222
DMMitoQ, 203
Echium, 127
EDF, 287
Ellobius talpinus, 241
FDA, 245
FOXO, 222
Ficedula albicollis, 325
FtsZ, 285
Genoma orbignyana, 325
Gophenus agassizii, 325
Gracicinasus microtarsus, 131
Haliotis rufescens, 325
Heterocephalus glaber, 34, 56, 143, 159, 164, 171, 321,322, 323
Homo sapiens liberatus, 247
Hydra magnipapillata, 325
Hypericum cumulicola, 325
Ictidomys tridecemlineatus, 321
Laminaria digitata, 325
LexA, 285 Lit, 288
Marmotaflaviventris, 325
mazEF, 287
Melanopsis spretus, 148
Microtus oeconomus, 325
MitoQ, 186, 187, 203, 205, 230
N-ацетилцистеин, 200, 201, 231
NADH, 181, 293, 294, 295, 303
NADH-CoQ-редуктаза, 293
NFkB, 175
Nigella sativa, 204
Nothobranchius, 133
Nothobranchius furzeri, 133
Nothobranchius kuhntae, 133
Nothobranchius rachovii, 133
NRF1, 320
N-ацетилцистеин, 200, 201, 231
Octopus hummelincki, 22
omi, 281
ONOO, 297
OXYS. См. крысы линии
OXYS Pagurus longicarpus, 325
Pagurus longicarpus, 325
Paramuricea clavate, 325
Parus major, 325
p16 INK4A, 309
p21, 309
p53, 200, 231, 309, 310
p66shc, 167, 169
PGC-1 a, 319, 320, 321, 322
Pediculus humanus, 325
Pepio cynocephalus, 325
Pinus sylvestrum, 325
Phodopus campbelli, 241
PPAR-γ, 320
pRb, 309
Puya reimodii, 129
Quercus rugosa, 325
Q-цикл, 293, 304
RAGE, 173
Rana aurora, 325
Ravenala madagascariensis, 127
RecA, 285
Rhododendron maximum, 325
Rhizobium, 119
S. cerevisiae. См. Saccharomyces cerevisiae
Staphylococcus pheumonia, 119
Saccharomyces cerevisiae, 117, 120
Sebastes aleutianus, 33
SIRT3, 165
SkBQ, 205
SkQ1, 67
влияние на иммунитет, 196, 239, 241
возвращение зрения ослепшим животным, 75
геропротекторные свойства, 197, 200, 235, 249
действие на зрение крыс OXYS, 74, 205, 208
действие на мышей с ускоренным старением, 83
действие на продолжительность жизни, 82,195,239
действие на скорость заживления ран, 214
доклинические исследования, 75 и ограничение калорийности питания, 213
и рак, 230, 231, 233
как защитное средство после кризиса, 225
как потенциальное лекарство от септического шока, 87
коэффициент распределения, 190, 201
накопление в митохондриях, 192, 201
основные эффекты, 73, 194, 195, 197, 198
подавление апоптоза, 170, 195
предотвращение перекисного окисления липидов, 202
предотвращение смерти после кризиса, 226
применение в виде глазных капель, 74, 75, 79, 182, 235
про- и антиоксидантные свойства, 187, 203
противоопухолевая активность, 231, 232
разобщающие свойства, 194, 227
растворимость в воде, 190
регенерация восстановленной формы, 201
стабильность, 68
физико-химические свойства, 68
формула, 67
SkQ3, 203, 205, 236
SkQBerb, 204
SkQR1, 194, 226, 227–229, 236, 242
и болезнь Альцгеймера, 229
предотвращение смерти после кризиса, 226
SkTQ, 205, 242
smac, 281
Sonchus, 127
SulA, 285
Tachigalia versicolor, 129
TRPA-1, 222
а-токоферол, 205, 238
β-амилоид, 174, 228
β-окисление жирных кислот, 293
Δψ, 168, 177, 178, 201, 229, 237, 304
роль в феноптозе, 177
Viburnum furcatum, 325
абсцизовая кислота, 124, 137, 139, 158
австралийская сумчатая мышь, 24, 131
аденозинтрифосфат, 52, 135, 161, 166, 292, 294, 301, 304, 318, 319, 322
адреналин, 131
азотобактер, 302
аконитаза, 305
активные формы кислорода, 50, 53, 151, 297
биологические механизмы защиты от, 300
влияние мембранного потенциала на генерацию, 304
генерация в митохондриях, 53, 161, 163, 164,170
генерация при гипоксии-реоксигенации, 227
зависимость скорости генерации от Δψ, 177,304
источники в живой клетке, 299
как главный яд старения, 152
механизм образования в митохондриях, 162, 297
необходимость для жизни, 65
окисление липидов, 53
повреждения ДНК, 53, 54, 152
роль аконитазы в подавлении генерации, 305
роль в апоптозе, 170, 281
роль в канцерогенезе, 232
роль в разрушительных процессах в организме, 157
роль при инфаркте, 228
ускорение старения, 167
физиологические функции, 57, 160, 232
актомиозин, 155
акула, 141
альбатрос, 141, 148
альдегиды, 151
Альцгеймера болезнь, 174, 228, 229, 318
6-аминопенициллановая кислота, 289
6-АПК. См. 6-аминопенициллановая кислота
амиодарон, 178
антибиотики, 285
антимицин А, 193
антиоксиданты, 63, 65, 200, 231, 300
Читать дальшеИнтервал:
Закладка: