Сергей Федин - Математики тоже шутят
- Название:Математики тоже шутят
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2009
- Город:М.
- ISBN:978-5-397-00683-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Федин - Математики тоже шутят краткое содержание
Кто сказал, что математики — скучные люди? Ничего подобного! Они умеют посмеяться не хуже других, что прекрасно доказывает предлагаемая книга. В ней собрано несколько сотен математических шуток — здесь и забавные истории с известными учеными, смешные случаи на лекциях и экзаменах, студенческий фольклор и, конечно же, математические анекдоты. В общем, каждый, кто когда-либо поклонялся белой богине математики, найдет здесь развлечение по душе.
Но книга будет интересна и полезна не только любителям математики, студентам и преподавателям (какая же хорошая лекция обойдется без к месту сказанной шутки?), но и школьникам старших классов, а также всем тем, кто сталкивался с этой увлекательной наукой в вузе.
Математики тоже шутят - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, √, sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала ( n ! = 1 x 2 x ... х n ), но не допускается использование секанса, косеканса и дифференцирования.
Например, для пары 75–33 искомое равенство достигается следующим образом:

а для пары 00–38 — так:

Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» — спросил я у Ландау. — «Нет», — ответил он весьма определенно. — «Вы доказали теорему о несуществовании решения?» — удивился я. — «Нет», — убежденно сказал Лев Давидович, — «но не все номера у меня получались».
Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.
Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу

позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», — пишет об этом решении Каганов. — «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли его в каком-нибудь научном журнале».
Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.
В конце концов, автор исходной заметки про игру Ландау, проф. Горобец дал еще одно, почти тривиальное общее решение: «Возьмем произвольный номер a,b—c,d и рассмотрим три случая.
1. Пусть среди цифр нет нулей. Составим из них два числа ab и cd , (это, разумеется, не произведения). Покажем, что при n ≥ 6:
sin[( ab )!]° = sin[( cd )!]° = 0.
Действительно, sin( n !)° = 0, если n ≥ 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.
2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.
3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.
Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin( n !)° ≠ 0, если n < 6».
Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.
21. Гадание по определителям

Если посчитать этот шутливый определитель, написанный по идее московского математика Ю. А. Шевченко, то получится примерно следующее: Петя любит Машу, а Маша не любит математику.
22. 9 знаков
Еще про определители.
Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают — ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.
Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.
23. Как академики задачу решали
Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».
Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) — «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.
Случилось так, что соратник Ландау и его соавтор по десятитомному курсу по теоретической физике академик Евгений Михайлович Лифшиц (1915–1985) в 1959 году помогал выпускнику школы Боре Горобцу готовиться к поступлению в один из ведущих физических вузов Москвы.
На письменном экзамене по математике в Московском физико-математическом институте предлагалась следующая задача: «В основании пирамиды SABC лежит прямоугольный равнобедренный треугольник ABC, с углом C = 90°, стороной AB = l. Боковые грани образуют с плоскостью основания двугранные углы α, β, γ. Найдите радиус вписанного в пирамиду шара».
Будущий профессор не справился тогда с задачей, но запомнил ее условие и позже сообщил Евгению Михайловичу. Тот, повозившись с задачей в присутствии ученика, не смог решить ее сходу и забрал с собой домой, а вечером позвонил и сообщил, что, не одолев ее в течение часа, предложил эту задачу Льву Давидовичу.
Ландау обожал решать задачи, вызывавшие затруднения у других. Вскоре он перезвонил Лифшицу и, довольный, сказал: «Задачу решил. Решал ровно час. Позвонил Зельдовичу, теперь решает он.» Поясним: Яков Борисович Зельдович (1914–1987) — известный ученый, считавший себя учеником Ландау, был в те годы главным физиком-теоретиком в сверхсекретном Советском Атомном проекте (о чем, конечно, тогда мало кто знал). Примерно через час Е. М. Лифшиц позвонил снова и сообщил: только что ему позвонил Зельдович и не без гордости сказал: «Решил я вашу задачу. За сорок минут решил!»
Читать дальшеИнтервал:
Закладка: