БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)
- Название:Большая Советская Энциклопедия (ВЕ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ) краткое содержание
Большая Советская Энциклопедия (ВЕ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
для плоского поля координаты градиента равны
Градиент скалярного поля представляет собой векторное поле.
Для характеристики векторных полей вводится целый ряд понятий: векторной линии, векторной трубки, циркуляции векторного поля, дивергенции и вихря (ротора) векторного поля. Пусть в некоторой области W задано векторное поле посредством векторной функции а ( М ) переменной точки М из W . Линия L в области W называется векторной линией, если вектор касательной в каждой её точке М направлен по вектору а ( М ) ( рис. 8 ). Если поле а ( М ) — поле скоростей частиц стационарного потока жидкости, то векторные линии этого поля — траектории частиц жидкости. Часть пространства в W , состоящая из векторных линий, называется векторной трубкой ( рис. 9 ). Если обратиться к векторному полю скоростей частиц стационарного потока жидкости, то векторная трубка есть часть пространства, которую «заметает» при своём перемещении некоторый фиксированный объём жидкости.
Пусть АВ — некоторая гладкая линия в W , l — длина дуги АВ, отсчитываемая от точки А до переменной точки М этой линии, t — единичный вектор касательной к АВ в М. Циркуляцией поля а ( М ) вдоль кривой АВ называется выражение
Если b ( M ) — силовое поле, то циркуляция а вдоль АВ представляет собой работу этого поля вдоль пути АВ.
Дивергенция векторного поля а ( М ) , имеющего в базисе i, j, k координаты Р, Q, R , определяется как сумма
и обозначается символом div а. Например, дивергенция гравитация поля, создаваемого некоторым распределением масс, равна плотности (объёмной) r ( х, у, z ) этого поля, умноженной на 4p.
Вихрь (или ротор) векторного поля а ( М ) представляет собой векторную характеристику «вращательной составляющей» этого поля. Вихрь поля а обозначается rot а . Если Р, Q, R — координаты а в базисе i, j, k ,то
Пусть поле a есть поле скоростей потока жидкости. Поместим в данной точке потока малое колесико с лопастями и ориентируем его ось по направлению rot ав этой точке. Тогда скорость потока будет максимальной, а её значение будет равно
Градиент скалярного поля, дивергенция и вихрь векторного поля обычно называют основными дифференциальными операциями векторного анализа. Справедливы следующие формулы, связывающие эти операции:
grad ( fh ) = f grad h + h grad f,
div ( f a ) = ( a, grad f ) + f div a,
rot ( f a ) = f rot a + [ grad f, a ] ,
div [ a, b ] = ( b, rot a ) - ( a, rot b ) .
Векторное поле а ( М ) называется потенциальным, если это поле представляет собой градиент некоторого скалярного поля f ( M ) . При этом поле f ( M ) называется потенциалом векторного поля а. Для того чтобы поле а, координаты которого Р, Q, R имеют непрерывные частные производные, было потенциальным, необходимо и достаточно обращение в нуль вихря этого поля. Если в односвязной области W задано потенциальное поле а ( М ), то потенциал f ( M ) этого поля может быть найден по формуле
в которой AM — любая гладкая кривая, соединяющая фиксированную точку А из W с точкой М , t— единичный вектор касательной кривой AM и l — длина дуги AM, отсчитываемая от точки А.
Векторное поле а ( М ) называется соленоидальным, или трубчатым, если это поле представляет собой вихрь некоторого поля b ( M ) . Поле b ( M ) называется векторным потенциалом поля a . Для того чтобы а было соленоидальным, необходимо и достаточно обращение в нуль дивергенции этого поля. В векторном анализе важную роль играют интегральные соотношения: Остроградского формула, именуемая также основной формулой векторного анализа, и Стокса формула. Пусть V — область, граница Г которой состоит из конечного числа кусков гладких поверхностей, n — единичный вектор внешней нормали к Г . Пусть в области V задано такое векторное поле а ( М ) , что div а представляет собой непрерывную функцию. Тогда справедливо соотношение
называемое формулой Остроградского.
Если a — поле скоростей установившегося потока несжимаемой жидкости, то ( a , n ) ds — объём жидкости, протекающей в единицу времени через площадку ds на границе Г . Поэтому правая часть формулы (1) представляет собой поток жидкости через границу Г тела V в единицу времени. Так как в рассматриваемом случае div а характеризует интенсивность источников жидкости, то формула Остроградского выражает следующий наглядный факт: поток жидкости через замкнутую поверхность Г равен количеству жидкости, порождаемой всеми источниками, расположенными внутри Г. Пусть в области W задано непрерывное и дифференцируемое векторное поле а , имеющее непрерывный вихрь rot а . Пусть Г — ориентируемая поверхность, состоящая из конечного числа кусков гладких поверхностей, n— единичный вектор нормали к Г , t — единичный вектор касательной к краю g поверхности Г , l — длина дуги g. Справедливо следующее соотношение
Интервал:
Закладка: