Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
- Название:Ответы на экзаменационные билеты по эконометрике
- Автор:
- Жанр:
- Издательство:Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».
Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.
Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.
Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Нелинейнымипо оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменная yi нелинейно зависит от коэффициентов модели β0…βn .
К моделям регрессии, нелинейными по оцениваемым параметрам, относятся:
1) степенная функция:

2) показательная или экспоненциальная функция:

3) логарифмическая парабола:

4) экспоненциальная функция:

5) обратная функция:

6) кривая Гомперца :

7) логистическая функция или кривая Перла-Рида :

Кривыми насыщенияназываются показательная, логарифмическая и экспоненциальная функции, т. к. будущий прирост результативной переменной зависит от уже достигнутого уровня функции.
Кривые насыщения применяются для характеристики явлений и процессов, величина роста которых является ограниченной величиной (например, в демографии).
Определение. S-образными кривыми называются кривая Гомперца и кривая Перла-Рида. Данные кривые представляют собой кривые насыщения с точкой перегиба.
S-образные кривые применяются для характеристики явлений, включающий в себя два последовательных процесса – ускорения и замедления достигнутого уровня развития. Подобные явления характерны для демографии, страхования и других областей.
Модели регрессии, нелинейные по оцениваемым коэффициентам, делятся на два класса:
1) модели регрессии, которые можно с помощью преобразований привести к линейному виду;
2) модели регрессии, которые невозможно привести к линейному виду.
Рассмотрим первый класс моделей регрессии.
Показательная функция вида

является нелинейной по коэффициенту β1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка εi мультипликативно связана с факторной переменной хi .
Данную модель можно привести к линейному виду с помощью логарифмирования:
Log yi=log β0+ хi* logβ1+ log ε i.
Для более наглядного представления данной модели регрессии воспользуемся методом замен:
log yi=Yi;
log β0=A;
logβ1=B ;
log ε i=E .
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Yi=A+Bхi+E .
Таким образом, можно сделать вывод, что рассмотренная показательная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Другим примером моделей регрессии первого класса является степенная функция вида:

Данная модель характеризуется тем, что случайная ошибка βi мультипликативно связана с факторной переменной хi .
Данную модель можно привести к линейному виду с помощью логарифмирования:
lnyi=lnβ0+β1 lnхi + lnεi.
Для более наглядного представления данной модели регрессии воспользуемся методом замен:
ln yi=Yi;
ln β0=A;
lnхi=Xi;
lnεi=E.
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Yi=A+β1Xi+E .
Таким образом, можно сделать вывод, что рассмотренная степенная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Рассмотрим второй класс моделей регрессии, нелинейных по оцениваемым коэффициентам.
Показательная функция вида

относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка βi аддитивно связана с факторной переменной хi .
Степенная функция вида

относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка ε i аддитивно связана с факторной переменной хi .
Таким образом, для оценки неизвестных параметров моделей регрессии, которые нельзя привести к линейному виду, нельзя применять классический метод наименьших квадратов. В этом случае используются итеративные процедуры оценивания (квази-ньютоновский метод, симплекс-метод, метод Хука-Дживса , метод Розенброка и др.).
41. Модели регрессии с точками разрыва
Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.
Модели регрессии делятся на два класса:
1) кусочно-линейные модели регрессии;
2) собственно модели регрессии с точками разрыва.
Кусочно-линейные модели регрессии характеризуются тем, что вид зависимости между результативной переменной и факторными переменными может быть неодинаков в различных областях значений факторных переменных.
В качестве примера кусочно-линейной модели регрессии рассмотрим регрессионную зависимость показателя себестоимости единицы произведённой промышленной продукции (результативная переменная) от показателя объёма промышленного производства за месяц (факторная переменная). Исследуемые показатели связаны линейной зависимостью, т. к. с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции снижается, и наоборот.
Читать дальшеИнтервал:
Закладка: