И. Карапетян - Справочник по проектированию электрических сетей
- Название:Справочник по проектированию электрических сетей
- Автор:
- Жанр:
- Издательство:ЭНАС
- Год:2012
- Город:Москва
- ISBN:978-5-4248-0049-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
И. Карапетян - Справочник по проектированию электрических сетей краткое содержание
Приводятся сведения по проектированию электрических сетей энергосистем, методам технико-экономических расчетов, выбору параметров и схем сетей, данные по электрооборудованию, воздушным и кабельным линиям, по стоимости элементов электрических сетей.
В настоящем издании учтены последние изменения структуры российской энергетики и требования новых нормативных документов; приведены новые технические данные по кабельным линиям, автотрансформаторам, коммутационным аппаратам и другим видам оборудования, а также уточненные стоимостные показатели объектов сетевого хозяйства; рассмотрены современные подходы к формированию тарифов на электроэнергию.
Справочник предназначен для инженеров, занятых проектированием и эксплуатацией энергетических систем и электрических сетей, а также для студентов энергетических вузов.
Справочник по проектированию электрических сетей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Таблица 3.13

Для линий с максимумом нагрузки летом или в часы снижения нагрузки энергосистемы (при К м ≤ 0,5) I 5принимается по максимальной нагрузке линии, а α t — равным 0,4.

Сечения проводов на ответвлениях от основной ВЛ длиной до 2 км, сооружаемых одновременно с основной линией, принимается таким же, как и на основной линии. Для заходов действующих ВЛ на новые ПС сечение провода выбирается, как правило, не меньшим, чем на основной линии.
При пользовании нормированными значениями плотности тока необходимо также руководствоваться следующим. Приведенные выше значения относятся только к проектируемым линиям и не являются критерием экономической нагрузки существующих линий. На таких линиях по сравнению с прокладкой дополнительных цепей или заменой проводов проводами больших сечений допускается превышение (вплоть до двукратного) нормативных величин плотности тока.
Увеличение числа цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения требований по экономической плотности тока обосновывается технико-экономическим расчетом. При этом во избежание увеличения числа линий или цепей также допускается превышение нормативных величин плотности тока вплоть до двукратных значений.
Для ВЛ 110–220 кВ основной сети, сооружаемых на территории крупных городов, рекомендуется применять сечения проводов не менее 240 и 400 мм 2соответственно.
В табл. 3.14 приведены значения передаваемой мощности по ВЛ 35—500 кВ, соответствующие нормированной плотности тока.
Выбранное сечение провода должно быть проверено по допустимой токовой нагрузке по нагреву I доп.:
I р.н. ≤ I доп.,
— расчетный ток для проверки проводов по нагреву (средняя токовая нагрузка за полчаса); при этом расчетными режимами могут являться нормальные или послеаварийные режимы, а также периоды ремонтов других элементов сети, возможных неравномерностей распределения нагрузки между линиями и т. п.
Таблица 3.14

Допустимые длительные токи и мощности для неизолированных проводов марок АС и АСК приведены в табл. 3.15, а поправочные коэффициенты на температуру воздуха для неизолированных проводов — в табл. 3.16.
Таблица 3.15

Таблица 3.16

Проверке по условиям короны подлежат ВЛ 110 кВ и выше, прокладываемые по трассам с отметками выше 1500 м над уровнем моря. При более низких отметках проверка не производится, если сечения проводов равны минимально допустимым по условиям короны или превышают их.
Проверке по допустимым потерям и отклонениям напряжения ВЛ 35 кВ и выше не подлежат, так как повышение уровня напряжения путем увеличения сечения проводов таких линий по сравнению с применением трансформаторов с РПН или средств компенсации реактивной мощности экономически не оправдывается.
3.1.3. Технические показатели отдельных ВЛ
Характеристики и технические показатели отдельных ВЛ 110 — 1150 кВ, построенных в последние годы, приведены в табл. 3.17— 3.22.
Таблица 3.17

Таблица 3.18

Таблица 3.19

Окончание табл. 3.19

Таблица 3.20

Таблица 3.21

Окончание табл. 3.21

Таблица 3.22

Окончание табл. 3.22

3.2. Кабельные линии
Общая протяженность КЛ напряжением 110 кВ и выше в России по состоянию на начало 2010 г. составила около 1580 км (по цепям).
Кабельные линии 110 и 220 кВ в отечественной практике нашли применение при построении сети крупнейших городов, в схемах электроснабжения химических, нефтеперерабатывающих, металлургических, автомобильных и других промышленных предприятий, выдачи мощности электростанций, преодоления водных преград и в других случаях.
В схемах электрических сетей с использованием КЛ 110–220 кВ получили распространение радиальные и цепочечные схемы построения сети.
В мировой практике в 1970-1980-е гг. прошлого столетия использование кабелей 220 кВ и выше переменного и постоянного тока было связано преимущественно с преодолением водных преград (реки, проливы). В последние годы наряду с этим все более широкое применение получают кабельные прокладки сверхвысокого напряжения (СВН) при организации глубоких вводов в центральные районы крупнейших городов. Помимо надежного электроснабжения КЛ СВН обеспечивают максимальное сохранение окружающей среды и позволяют избежать строительства ВЛ на территории городов.
Совершенствование конструкции и технологии изготовления позволило создать более совершенные кабели традиционного типа и активно вести новые разработки. В настоящее время европейскими производителями кабельной продукции разработаны, испытаны и созданы промышленные образцы кабеля СВН рекордной пропускной способности напряжением:
до 1000 кВ маслонаполненные с поперечным сечением токоведущей части 2500 мм 2, пропускная способность 3 млн кВт;
до 500 кВ с изоляцией из сшитого полиэтилена с поперечным сечением токоведущей части 2500 мм 2, пропускная способность 1,9 млн кВт.
В ряде стран разрабатываются КЛ повышенной пропускной способности на базе использования явления сверхпроводимости.
Указанные работы в настоящее время не вышли из стадии опытно-промышленных разработок. Принципиально КЛ состоит из трех компонентов: криогенный кабель, рефрижираторное и вспомогательное оборудование и концевые устройства (токовводы). Для охлаждения токоведущих элементов КЛ до криогенных температур (меньше 120 K) в качестве хладагентов используются сжиженные газы (гелий в жидком или сверхкритическом состоянии и др.), а в качестве материала токопроводящих жил — ниобий и другие материалы. Пропускная способность криогенной КЛ переменного тока при напряжениях 110–500 кВ оценивается величинами соответственно 2,5–5,4 ГВА.
Читать дальшеИнтервал:
Закладка: