Чарльз Эллис - Эпигенетика
- Название:Эпигенетика
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2010
- Город:Москва
- ISBN:978-5-94836-257-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Эллис - Эпигенетика краткое содержание
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.
Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Интересно, что уровни ATRX строго регулируются и что как уменьшение, так и увеличение его количества, вызывают основные проблемы в развитии нервной системы. Например, пациенты, у которых в результате мутаций имеется 10—30% ATRX от его нормального уровня, проявляют полный фенотип, характерный для ATRX, несмотря на наличие значительного количества нормального белка ATRX (Picketts et al., 1996). Слишком большое количество ATRX, похоже, тоже является разрушительным. У трансгенных мышей с сверхэкспрессией ATRX развиваются дефекты нервной трубки, наблюдается замедление роста и гибель в процессе эмбриогенеза. У тех, кто выживает, наблюдаются краниофасциальные аномалии, непроизвольное царапанье морды и припадки. Эти характеристики напоминают клиническую картину у пациентов с мутациями ATRX типа «потери функций», что указывает на возможность того, что уровни ATRX строго регулируются для функциональной целостности белкового комплекса, внутри которого он находится.
Синдром иммунодефицита, нестабильности центромерного участка и лицевых аномалий (ICF, OMIM 242860) — это редкое аутосомное рецессивное нарушение, связанное с разрывом хромосом. Пациенты с ICF проявляют два неизменных фенотипа: иммунодефицит и цитогенетические аномалии. Высокоизменчивые и менее пенетрантные фенотипы включают в себя черепно-лицевые дефекты, такие как широкую и плоскую переносицу, складки эпикантуса, высокий лоб и низко посаженные уши, задержку психомоторного развития и кишечную дисфункцию (Smeets et al., 1994). В типичном случае иммунодефицит представлен в тяжелых формах и часто вызывает смерть в детстве, до достижения зрелого возраста, в результате респираторных или желудочно-кишечных инфекций. Наиболее обычный иммунологический дефект — это снижение уровня сывороточных иммуноглобулинов (IgG), но наблюдается также и уменьшение числа В- или Т-клеток (Ehrlich, 2003). Цитогенетические аномалии, в первую очередь затрагивающие хромосомы 1 и 16, и, в меньшей степени, 9, видны при обычном кариотипическом анализе крови и в культивируемых клетках пациентов с ICF (рис. 5b) (Tuck-Muller et al., 2000).
Гипометилирование околоцентромерных повторяющихся последовательностей на хромосомах 1, 9 и 16 было обнаружено задолго до идентификации гена ICF (Jean-pierre et al., 1993). Эти хромосомы содержат наиболее крупные блоки классических сателлитных (сателлиты 2 и 3) тандемных повторов около центромеров. Тот факт, что ICF вызывается мутациями типа «потери функции» в гене ДНК метилтрансферазы (DNMT3B), метилирующей ДНК de novo, способствовало пониманию роли ослабления метилирования в центромерных сателлитах 2 и 3 (Hansen et al., 1999; Okano et al., 1999; Xu et al., 1999). Однако остается неясным, почему потеря функции у повсеместно экспрессирующейся de novo метилтрансферазы избирательно затрагивает специфические повторяющиеся последовательности. Одно из возможных объяснений связано с внутриклеточным распределением и (или) контекст-специфичным белковым взаимодействием DNMT3B (Bachman et al., 2001). Другая возможность состоит в том, что каталитическая активность DNMT3B в большей степени необходима для метилирования последовательностей нуклеотидов с высокой плотностью CpGs на больших геномных участках, как в случае с сателлитом 2 (Gowher and Jeltsch, 2002) или повторяющейся последовательностью D4Z4, что подразумевается при плече-лопаточно-лицевой миопатии (Kondo et al., 2000). Остается определить, являются ли гипометилированными дополнительные специфические последовательности, но прогнозируется, что гипометилирование ДНК ведет к изменению экспрессии генов, которые играют важную роль в развитии черепно-лицевой области, нервной и иммунной систем.
Изучение экспрессии генов с использованием РНК из лимфобластоидных клеточных линий от пациентов с ICF и от здоровых контрольных людей выявило несколько изменений в генах, участвующих в созревании, миграции, активации и хоминге лимфоцитов (Ehrlich et al., 2001). Не понятно, однако, вызывает ли потеря DNMT3B дисрегуляцию таких генов, потому что паттерны метилирования в их промоторах не кажутся измененными. Притом, что единственное выявленное пока гипометилирование при ICF имеет место на саттелитной ДНК, предполагается, что некоторые из генов, измененных при ICF, могут связываться с саттелитной ДНК. Такие нуклеотидные последовательности в типичном случае, будучи метилированными, ведут себя как гетерохроматин; таким образом, при ICF имеет место разрегулированная экспрессия генов, благодаря транс-эффектам гетерохроматиновых участков, обогащенных доменами с сателлитами 2 и 3 (Bickmore and van der Maarel, 2003).
Дисплазия Шимке (SIOD, OMIM 242900) — это аутосомное рецессивное мультисистемное нарушение, характеризующееся дисплазией позвоночника и концов длинных костей, недостаточностью роста, функциональными почечными аномалиями вследствие очагового (центрального) гломерулосклероза, гипотироидизмом и дефектным Т-клеточным иммунитетом (Schimke et al., 1971; Spranger et al., 1991). SIOD вызывается мутациями в SMARCAL1 (SWl/SNF2-CBB3aHHbm, ассоциированный с матриксом; актин-зависимый регулятор хроматина, подсемейство а-like 1), который кодирует белок, регулирующий транскрипционную активность посредством ремоделинга хроматина (Boerkoel et al., 2002). Нонсенс-мутации и мутации сдвига рамки считывания вызывают тяжелые нарушения фенотипа, тогда как некоторые из миссенс-мутаций вызывают возникновение более мягких, или частично выраженных фенотипов (Boerkoel et al., 2002). Недавно у пациента с лимфомой В-клетоки с SIOD была обнаружены мутации в SMARCAL ; это предполагает, что потеря функции данного белка может вызывать фатальное лимфопролиферативное расстройство (Taha et al., 2004). Остается прояснить точный механизм, посредством которого утрата SMARCAL1 вызывает фенотип SIOD.
Метилентетрагидрофолатредуктаза (MTHFR) участвует в превращении 5, 10-метилентетрагидрофолата (5,10-MTHF) в 5-метилтетрафолат (5MTHF). Метальная группа приобретается затем от 5MTHF во время превращения гомоцистеина в метионин с помощью метионинсинтазы. Метионин далее превращается в S-аденозилметионин (SAM), основной донор метила для всех метилтрансфераз. Дефицит MTHFR вызывает редкое аутосомное рецессивное расстройство, характеризующееся умственной отсталостью (Rozen, 1996). Обычный термолабильный полиморфизм (6770Т, который изменяет аланин на валин) вызывает понижение активности MTHFR и ассоциировался, особенно у гомозоготных пациентов, в диете которых низкое содержание фолатов, с гипергомоцистеинемией (Goyette et al., 1994). Этот полиморфизм изучался как фактор риска возникновения атеросклероза, дефектов нервной трубки и рака (Ма et al., 1997; Brattstrometal., 1998; Chenetal., 1999; Bottoand Yang, 2000; Schwahn and Rozen, 2001). Мыши, гетерозиготные или гомозиготные по нулевой аллели MTHFR, имеют пониженный уровень SAM, пониженное общее метилирование ДНК. Более того, такие нуль-мутанты имеют липидные отложения на аорте и дегенерацию нейронов (Chen et al., 2001). Общее изменение метилирования ДНК, связанное с частичной или полной потерей MTHFR, позволяет предположить, что некоторые из фенотипов, ассоциирующиеся с этими дисфункциями, могут являться следствием нарушений хроматина благодаря пониженному метилированию ДНК (и, возможно, гистонов). Имеется одно сообщение о том, что дефицит MTHFR вызывает фенотип, характерный для синдрома Ангелмана (Arn et al., 1998), и имеются существенные совпадения тяжелой недостаточности по MTHFR с AS и RTT (Fattal-Valevski et al., 2000).
Читать дальшеИнтервал:
Закладка: