Чарльз Эллис - Эпигенетика
- Название:Эпигенетика
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2010
- Город:Москва
- ISBN:978-5-94836-257-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Эллис - Эпигенетика краткое содержание
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.
Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Еще один пример из данной группы генов — это HIC-1 (hypermethylated-in-cancer 1). который кодирует транскрипционный репрессор типа «цинкового пальца» HIC-1 был обнаружен методом случайного скрининга на гиперметилированные островки CpG в горячей точке для потери хромосомы в раковых клетках (Wales et al., 1995). Оказалось, что этот ген, который сайленсирует на ранней стадии развития рака, но не мутирует, играет роль гена-супрессора опухоли при использовании модели нокаутной мыши (WY. Chen et al., 2003, 2004). Он служит дополнением к мутациям р53 частично, через потерю функции, которая приводит к апрегуляции SIRT1 (Chen et al., 2005), ключевого белка, воспринимающего клеточный стресс, и участвующего в росте стволовых или прогениторных клеток (Howitz et al., 2003; Nemoto et al., 2004; Kuzmichev et al., 2005).
Таким образом, приведенные выше данные вносят свой вклад в тематические гипотезы, представленные на рис. 24.4. Это предполагает, что некоторые из наиболее ранних наследуемых изменений в развитии опухолей могут представлять собой эпигенетические изменения, которые часто включают в себя жесткий транскрипционный сайленсинг генов, поддерживаемый метилированием промотора ДНК. Сложные задачи по дальнейшему пониманию этих сценариев целиком связаны с ключевыми задачами по изучению эпигенетических изменений при раковых заболеваниях, которые обрисованы в табл. 24.5 и более полно обсуждаются далее. Решение этих задач, в особенности для понимания роли эпигенетических изменений на самых ранних стадиях неопластического формирования, может удивительно обогатить молекулярные стратегии, имеющие целью предотвращение и раннее вмешательство при раковых заболеваниях.
1. Выяснить связи между одновременным появлением и утратой метилирования ДНК в одних и тех же раковых клетках
2. Определить молекулярную природу границ (и то, как они изменяются при опухолеобразовании), которые отделяют области транскрипционно активных зон от транскрипционно репрессивных областей, окружающих промоторы генов и которые могут препятствовать распространению репрессивного хроматина через активную зону. Роль возможных механизмов могут играть ключевые модификации гистонов, инсуляторные белки, белки, осуществляющие ремоделинг хроматина, и т. д.
3. Определить, какова последовательность событий в эволюции генного сайленсинга при раке, по отношению к модификации гистонов, метилированию ДНК и т. д. Что идет вначале и каковы ключевые белковые комплексы (ферменты метилирования ДНК, ферменты деацетилирования и метилирования гистонов, белки, связывающиеся CpG с метилом, комплексы сайленсинга группы Polycomb и т. д.), которые нацеливают вышеупомянутые процессы, определяющие данные события
4. Какие специфические ферменты, метилирующие ДНК, требуются для инициации и(или) поддержания наиболее стабильного генного сайленсинга, и какие белковые комплексы содержат их. с учетом их взаимодействие с ключевыми компонентами гистонового кода
5. Каковы все компоненты аппарата метилирования ДНК и хроматина и какова иерархия их участия, необходимого для поддержания генного сайленсинга, и насколько обратимы их действия?
6. Молекулярная анатомия эпигенетически сайленсированных раковых генов
Гены, сайленсированные в неопластических клетках, важны для понимания инициации и дальнейшего поддержания рака. Они также служат великолепными моделями для понимания того, как может инициироваться и поддерживаться сайленсинг гена, и как упакован геном млекопитающих, чтобы облегчить доступ к участкам транскрипции и репрессии транскрипции. В свою очередь, понимание функции хроматина, на которой сосредоточено основное внимание во многих главах этой книги, облегчает наше понимание того, что может служить триггером для аберрантного сайленсинга генов при раке, и того, как компоненты этого сайленсинга поддерживают сопутствующую ему транскрипционную репрессию.
Работа нескольких лабораторий внесла свой вклад в текущее понимание конфигурации хроматина, который окружает гиперметилированные островки CpG в промоторах многочисленных генов, аберрантно сайленсированных в раковых клетках. Эти исследования также показали, каким образом этот хроматин отличается от хроматина, окружающего те же самые гены, когда они обнаруживают базовую экспрессию. В нормальных клетках или в раковых клетках, где гены транскрипционно не репрессированы, эти гены характеризуются наличием зоны открытого хроматина, где островки CpG в ДНК не метилированы, нуклеосомы расположены с нерегулярными промежутками, так что могут быть определены гиперчувствительные сайты, и ключевые гистоновые остатки маркированы посттрансляционны-ми модификациями, типичными для активных генов Активные ковалентные гистоновые метки включают в себя ацетилирование H3 по 9 и 14-му лизинам (H3K9ас and H3K14ас) и метилирование H3K4 (Nguyen et al., 2001; Fahmer et al., 2002).
Ha 5’ и 3’ границах вышеупомянутого участка открытого хроматина обнаруживается резкий переход в структуре хроматина с характерными для транскрипционно репрессированных геномных участков чертами, фланкирующими островок CpG (рис. 24.6). В этих пограничных участках имеет место метилирование менее частых сайтов CpG и рекрутирование белков, связывающихся с метилцитозином (MBDs). и их партнеров (например, деацетилаз гистонов, или HDACs) к метилированным CpGs (глава 18) Участки вне островков CpG оказываются, таким образом, доступны для ферментов, которые катализируют метки метилирования гистонов, коррелирующие с сайленсингом гена. В результате действия всех этих факторов происходит деацетилирование ключевых гистоновых остатков и обнаруживаются репрессивные метки метилирования гистонов, связанные с транскрипционной репрессией, особенно H3K9me2 (Nguyen et al., 2001; Fahmer et al., 2002; Kondo etal., 2003).

Рис. 24.6.Модель взаимоотношений между метилированием ДНК и модификациями гистонов в районе островков CpG генного промотора в нормальных и опухолевых клетках
В экспрессируемом гене показана граница (сверху), молеуклярная природа которой пока не охарактеризована и которая защищает островок CpG, окружая сайт начала транскрипции (зеленая стрелка) от метилирования ДНК. Сайты. CpG в CpG-участках, фланкирующих эту защитную зону, наоборот, имеют метилированную ДНК (розовый шестиугольник, обозначенный М) и ассоциированы с такими ключевыми метками сайленсинга, как метилирование H3K9 (красный шестиугольник, обозначенный Me). Ключевые аминокислоты «хвостов» гистонов в защищенной зоне, такие как H3K9, находятся в ацетилированом состоянии (синие флажки, обозначенные Ас) и транскрипционные факторы (желтый овал, обозначенный TF) имеют доступ к участку сайта начала транскрипции. Когда в раковой клетке тот же ген аберрантно находится в состоянии сайленсинга (внизу), островок CpG характеризуется гиперметилированием ДНК, т.к. защитные границы теперь разорваны и отсутствуют. Это метилирование поддерживается комплексами ДНК-метилтрансферазы (розовые овалы, обозначены DMMT) и белковыми комплексами, связывающимися с метилцитозином, которые содержат гистон-ацетилазы (синие овалы, обозначены HDAQ), и гистон-метилтрансферазы (красные овалы, обозначены НКМТ), которые катализируют ключевые метки метилирования при сайленсинге на аминокислотных «хвостах» гистонов (таких как H3K9). TF-комплексы более не активны (отсутствие зеленой стрелки). Отображены главные подходы проводимых в настоящее время клинических испытаний по раковой эпигенетике, которые включают либо ингибиторы метилтрансфераз ДНК для блокирования гиперметилирования ДНК, либо ингибиторы HDAC для восстановления статуса ацетилирования ключевых аминокислотных остатков гистонов Как сказано в тексте, наиболее многообещающая антираковая терапия включает комбинированное использование ингибиторов DNMT1 и HDAC
Читать дальшеИнтервал:
Закладка: