Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Тут можно читать онлайн Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Аттикус, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Восемь этюдов о бесконечности. Математическое приключение
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Аттикус
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-389-19538-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение краткое содержание

Восемь этюдов о бесконечности. Математическое приключение - описание и краткое содержание, автор Хаим Шапира, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение - читать онлайн бесплатно ознакомительный отрывок

Восемь этюдов о бесконечности. Математическое приключение - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Хаим Шапира
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поиски чудотворной формулы

Ну ладно, мы поняли, что простых чисел существует бесконечное количество. После этого логично было спросить, есть ли в их появлении какой-либо порядок. Существует ли формула, дающая только простые числа? Существует ли формула, дающая все простые числа? Как могла бы выглядеть формула количества простых чисел до некоторого числа n ?

Не успели мы расстаться с великим швейцарским математиком Леонардом Эйлером (1707–1783), как снова встречаемся с ним.

В 1772 г. Эйлер выяснил, что выражение n ² + n + 41 (напомним, что любое выражение вида ax ² + bx + c называется квадратным многочленом) дает простые числа при условии, что n меньше 40. Например, для n = 0, 1, 2, 3, 4, 5, 6 мы получаем, соответственно, следующие значения: 41, 43, 47, 53, 61, 71, 83. Отметим, что разности между этими значениями равны 2, 4, 6, 10, 12.

Совершенно очевидно, что формула Эйлера не может выдавать простые числа бесконечно. Всякий, кто помнит хотя бы крохи математических законов, которые проходят в восьмом классе, поймет, что при n = 41 результат не будет простым числом, так как в этом случае все три слагаемые формулы делятся на 41, из чего следует, что и их сумма должна делиться на 41.

А если подумать еще немного, мы поймем, что эта формула не может давать простого числа и при n = 40. Запишем ее в таком виде:

40² + 40 + 41 = 40 (40 + 1) + 41 = 40 · 41 + 41 = 41 (40 + 1) = 41².

Получившееся значение – не только не простое число: это еще и полный квадрат, 1681.

Отметим, что число 1681 обладает одним весьма интересным свойством: это единственное четырехзначное число, которое не только само является полным квадратом, но и состоит из двух частей, 16 и 81, каждая из которых тоже само является полным квадратом (если не учитывать тривиальные случаи чисел вроде 1600).

Примечание. До сих пор не доказано, что какой-либо квадратный многочлен вида ax ² + bx + c генерирует бесконечное количество простых чисел.

Теорема Дирихле

Когда я слушал в Тель-Авивском университете курс теории чисел, лектор, профессор Григорий Фрейман, показал нам доказательство следующей теоремы:

Арифметическая прогрессия an + b содержит бесконечное количество простых чисел, если a и b – взаимно простые числа, то есть не имеют общих делителей, больших, чем 1.

Доказательство теоремы Дирихле, названной по имени Густава Лежёна Дирихле (1805–1859), исключительно красиво, но нашему лектору понадобилось для его объяснения четыре занятия, и оно заходит в области математики, лежащие далеко за пределами темы этой книги. Поскольку я обещал использовать только основные арифметические операции, я объясню, причем как можно проще, лишь утверждение этой теоремы.

Выберем два взаимно простых числа (то есть два числа, не имеющих общих делителей), например a = 3 и b = 4. Следует помнить, что сами эти числа могут и не быть простыми; они лишь должны быть взаимно простыми по отношению друг к другу. Итак, формула нашей прогрессии имеет вид 3 n + 4. Вычислим несколько последовательных членов прогрессии, начиная с n = 1.

Мы получим такую последовательность чисел: 7, 10, 13, 16, 19, 22, 25, 28, 31…

Вы, вероятно, уже заметили, что не все числа в этой последовательности простые. Но теорема Дирихле и не утверждает, что все они должны быть простыми числами. Теорема Дирихле гласит, что в последовательности появится бесконечное количество простых чисел – как и в любой последовательности, для которой a и b – взаимно простые числа. Разумеется, ясно, что в этих же последовательностях появится и бесконечное количество составных чисел. Например, в последовательности 3 n + 4 результат, несомненно, будет составным числом каждый раз, когда число n кратно 4.

Кстати говоря, фамилия Лежён Дирихле имеет интересную историю. Семья Дирихле происходила из деревушки Ришлет, расположенной вблизи бельгийского города Льежа. Поэтому его прозвали «юнцом из Ришлет» – le jeune de Richelette [19] По более распространенной версии так называли его деда, а сам Дирихле, родившийся в немецком городе Дюрене, унаследовал это прозвище уже в качестве фамилии. .

Царство составных чисел

Много лет назад меня назначили преподавателем очень особой программы в рамках Математической школы при Тель-Авивском университете. Профессор Бено Арбель отвечал за выявление старшеклассников с исключительными способностями к математике, а я должен был понемногу учить их и готовить к исследовательской работе параллельно с их школьными занятиями. Основной целью этой программы было дать им возможность получить бакалаврскую или даже магистерскую степень еще до окончания старшей школы или вскоре после него. Я часто давал им решать задачи, которые выбирал из своей личной коллекции Международных математических олимпиад, потому что считаю, что лучше всего развивают именно трудные задачи. Одной из задач, которые я задавал на разминочном этапе, была следующая.

Задача

Выпишите 100 последовательных чисел, среди которых не будет ни одного простого числа.

К этому моменту вы, вероятно, уже знаете, что я собираюсь написать дальше. Если вы думаете, что я напишу «попытайтесь немного подумать, прежде чем читать дальше», вы совершенно правы.

Маленькая подсказка

Это непростое упражнение. Первым делом вы, несомненно, подумали, что такая сплошная последовательность чисел должна начинаться с весьма большого числа, – мы уже знаем, что среди малых значений не найдется ста последовательных чисел, среди которых не было бы ни одного простого.

Продолжайте думать.

Пока вы думаете, я воспользуюсь этой возможностью, чтобы познакомить вас (или возобновить ваше знакомство) с одним очень важным обозначением, которое упрощает запись и размышления. Разумеется, то, что я ввожу это обозначение именно сейчас, не случайно: оно поможет нам решить эту задачу. Речь идет о символе факториала, который обозначается восклицательным знаком (!). Запись n ! обозначает в математике произведение всех чисел от 1 до n , то есть n ! = 1 × 2 × 3 × 4 × 5 × … × ( n – 1) × n .

Например, 5! = 1 × 2 × 3 × 4 × 5. Однажды один из моих учеников пропустил занятие, на котором я вводил факториалы. Когда он увидел обозначение 5! он назвал его «пять ух!». Сразу же очевидно, что 5! делится на все числа, входящие в произведение. Другими словами, n ! делится на все числа от 1 до n .

Добросовестности ради отмечу, что 0! принимают равным 1, чтобы не вносить противоречий в основную формулу определения факториала: n ! = ( n – 1)! × n .

А теперь попробуем еще раз взяться за нашу задачу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хаим Шапира читать все книги автора по порядку

Хаим Шапира - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Восемь этюдов о бесконечности. Математическое приключение отзывы


Отзывы читателей о книге Восемь этюдов о бесконечности. Математическое приключение, автор: Хаим Шапира. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x