Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Тут можно читать онлайн Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Corpus, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эта странная математика. На краю бесконечности и за ним
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Corpus
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-17-119879-4
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание

Эта странная математика. На краю бесконечности и за ним - описание и краткое содержание, автор Агниджо Банерджи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок

Эта странная математика. На краю бесконечности и за ним - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Агниджо Банерджи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Данные, собранные на сегодня астрономами при изучении дальних галактик, позволяют предположить, что Вселенная имеет плоскую форму и бесконечную протяженность. Однако что именно означает слово “бесконечный” применительно к пространству и времени в реальной вселенной, не вполне очевидно. Мы никогда не сумеем доказать путем прямых измерений, что пространство и время не имеют конца, потому что никогда не сможем получить информацию с бесконечно дальнего расстояния. Еще одна сложность – сама природа пространства и времени. Физики считают, что существует минимально возможное расстояние и минимально возможное время, известные как планковская длина и планковское время соответственно. Иными словами, пространство и время не непрерывны, а имеют квантованную, зернистую природу. Планковская длина – просто крошечная, всего 1,6 × 10 –35метра, или одна стоквинтиллионная размера протона. И планковское время, то есть промежуток времени, за который свет проходит расстояние, равное планковской длине, ничтожно мало – меньше 10 –43секунды. И все же из-за наличия этой дискретности пространства-времени нужно очень осторожно говорить о бесконечности в контексте физической вселенной. Как обнаружили математики, не все бесконечности одинаковы.

Первыми свои мысли о бесконечности записали греческие и индийские философы древности еще две тысячи лет назад. Анаксимандр в VI веке до нашей эры считал источником происхождения всего сущего “апейрон” (“беспредельность”). Спустя столетие его соотечественник Зенон из Элеи (местности, сегодня известной как Лукания в Южной Италии) впервые взглянул на бесконечность с математической точки зрения.

Зенон первым почувствовал опасности, что таит в себе бесконечность. Беспокойство вызывали описанные им парадоксы, в самом известном из которых Ахиллес состязается в беге с черепахой. Уверенный в своей победе, наш мифический герой дает черепахе фору. Но как же, спрашивает Зенон, может Ахиллес обогнать неторопливую рептилию? Ведь пока он добежит до того места, откуда черепаха начала свой путь, она уползет вперед. К тому времени, как Ахиллес преодолеет новое разделяющее их расстояние, черепаха продвинется еще дальше. И так далее, до бесконечности. Сколько бы Ахиллес ни добегал до того места, где только что была черепаха, ей каждый раз удастся уйти немного дальше. Очевидно, есть некое расхождение между тем, как мы порой представляем себе бесконечность и как все происходит в реальности. Сам же Зенон был настолько смущен и озадачен этим и другими парадоксами, что не только решил не задумываться больше о бесконечности, но и пришел к выводу, что движение невозможно!

Похожее потрясение испытали Пифагор и его последователи, убежденные, что все во вселенной в конечном счете можно описать целыми числами. Ведь даже обыкновенные дроби – это всего лишь одно целое число, деленное на другое. Но квадратный корень из 2 – длина гипотенузы прямоугольного треугольника с катетами по единице – никак не вписывался в эту стройную космическую схему. Это было “иррациональное” число, невыразимое в виде отношения двух целых чисел. Если попытаться представить его в виде десятичной дроби, количество знаков после запятой разрастается до бесконечности, а какой-либо четко повторяющейся группы цифр не возникает. Пифагорейцы всех этих тонкостей не знали, их беспокоило только то, что в их совершенный мир затесалось мерзкое чудище в виде квадратного корня из 2, а потому они тщательно скрывали его существование.

Эти два примера иллюстрируют основную проблему, связанную с постижением бесконечности. Наше воображение без труда справляется с тем, что еще не достигло своего конца: мы всегда можем представить себе, как любое расстояние увеличивается еще на шаг, к любому количеству предметов добавляется еще один. Но бесконечность в обобщенном значении, как понятие, в голове не укладывается. Математики издавна бились с ней, поскольку привыкли в своей области иметь дело с точными величинами и тщательнейшим образом определенными понятиями. А как можно работать с объектами, которые точно существуют, но никогда не заканчиваются, – с числом вроде √2 (начинающимся с 1,41421356237… и продолжающимся все дальше и дальше без видимого порядка и предсказуемых повторов) или кривой, что прижимается к прямой все теснее и теснее, – и при этом избежать встречи с бесконечностью? Аристотель предлагал возможное решение, утверждая, что бесконечность бывает двух видов. “Актуальная” (или “завершенная”) бесконечность, которой, по мнению Аристотеля, в реальности не существует, – это безграничность полностью реализованная, фактически достигнутая (математически или физически) в какой-то момент времени. “Потенциальная” бесконечность, которую Аристотель считал очевидно проявляющейся в природе – например, в нескончаемом чередовании времен года или безграничной делимости слитка золота (про атомы он не знал), – это беспредельность, протекающая в не имеющем границ времени. Это принципиальное разграничение между актуальной и потенциальной бесконечностью просуществовало в математике более двух тысяч лет.

В 1831 году сам Карл Гаусс высказался по поводу “ужаса актуальной бесконечности” так:

…Я протестую против пользования бесконечной величиной в качестве законченной, каковое пользование в математике никогда не дозволяется. Бесконечное является лишь façon de parler [39] Фигура речи ( фр. ). , между тем как речь идет собственно о пределах, к которым известные отношения приближаются произвольно близко, тогда как другим предоставляется возрастать без ограничения [40] Богомолов С. А. Актуальная бесконечность (Зенон Элейский и Георг Кантор) . Пб.: Academia, 1923. .

Взгляд в бесконечность Ограничившись изучением потенциальной бесконечности - фото 26

Взгляд в бесконечность.

Ограничившись изучением потенциальной бесконечности, математики смогли разрабатывать такие важнейшие понятия, как бесконечные ряды, пределы и бесконечно малые величины, придя таким образом к математическому анализу, но не признавая при этом б е сконечность в качестве самостоятельного математического объекта. И все же еще в Средние века они сталкивались с парадоксами и неразрешимыми задачами, а это значило, что от актуальной бесконечности нельзя просто отмахнуться. Эти неразрешимые задачи проистекали из принципа, согласно которому всем элементам одного набора объектов возможно найти пару в другом наборе объектов того же размера. Но вот когда этот принцип пытались применить к неограниченно большим наборам, он открыто противоречил продиктованной здравым смыслом идее, впервые высказанной Евклидом: что целое всегда больше, чем любая его часть. К примеру, казалось вполне возможным образовать пары из всех положительных целых чисел и только тех из них, которые являются четными : единице противопоставить двойку, двум – четыре, трем – шесть и так далее, несмотря на то что положительные целые числа включают в себя и четные тоже. Изучавший эту проблему Галилей первым предложил более просвещенный подход к бесконечности, заявив: “Бесконечность должна подчиняться иной арифметике, нежели конечные числа”.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Агниджо Банерджи читать все книги автора по порядку

Агниджо Банерджи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эта странная математика. На краю бесконечности и за ним отзывы


Отзывы читателей о книге Эта странная математика. На краю бесконечности и за ним, автор: Агниджо Банерджи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x