Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков
- Название:Значимые фигуры. Жизнь и открытия великих математиков
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9060-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков краткое содержание
Значимые фигуры. Жизнь и открытия великих математиков - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1799 г. Паоло Руффини, поняв намек, опубликовал двухтомную «Общую теорию уравнений». «Алгебраическое решение обобщенных уравнений степени выше четвертой, – писал он, – всегда невозможно. Вот очень важная теорема, которую, мне кажется, я в состоянии доказать (если не ошибаюсь)». В качестве источника вдохновения он сослался на исследование Лагранжа. К несчастью для Руффини, перспектива продираться через 500-страничный том, наполненный сложной алгеброй, только для того, чтобы получить в конечном итоге отрицательный результат, никому не улыбалась, и на его работу не обратили практически никакого внимания. Ведущие алгебраисты начали уже примиряться с вероятным отсутствием решения, и это, вероятно, тоже не способствовало повышенному интересу. Да и слухи о том, что в книге есть ошибки, гасили всякое желание с ней знакомиться. Руффини попробовал еще раз, с доработанным доказательством, более простым, как ему казалось, для понимания. В 1821 г. Коши все же написал автору, что его книга «всегда казалась мне достойной внимания математиков и, насколько я могу судить, полностью доказывает невозможность решения алгебраических уравнений степени выше четвертой».
Возможно, похвала Коши несколько исправила репутацию Руффини, но ему не пришлось долго этому радоваться; он умер меньше чем через год. После его смерти математики пришли к общему мнению о том, что уравнение пятой степени невозможно решить в радикалах, но статус доказательства Руффини долго еще оставался неясным. Лишь много лет спустя в нем была обнаружена небольшая ошибка. Пробел можно было залатать, еще удлинив тем самым книгу Руффини, но к тому момент Абель уже нашел гораздо более короткое и простое доказательство. Мало того, оказалось, что один из его результатов вполне в состоянии дополнить доказательство Руффини. Абель умер молодым, вероятно от туберкулеза. Такое впечатление, что уравнение пятой степени было чем-то вроде отравленной чаши для всех, кто занимался поисками его решения.
И Руффини, и Абель взяли на вооружение ключевую идею Лагранжа: важно, какие выражения сохраняют инвариантность при определенных перестановках корней. Главный вклад Галуа заключался в создании общей теории, основанной на перестановках и применимой к любым полиномиальным уравнениям. Он не просто доказал, что какие-то конкретные уравнения нерешаемы в радикалах; он задался вопросом, какие из них решаемы . Его ответ состоял в том, что набор перестановок, сохраняющих все алгебраические соотношения между корнями, – он назвал это группой уравнения – должен иметь конкретную, довольно формальную, но четко определенную структуру. Детали этой структуры объясняют, какие именно радикалы появятся в решении, если решение в радикалах существует в принципе. Отсутствие такой структуры означает, что решения в радикалах просто нет.
Задействованная здесь структура весьма сложна, хотя и естественна с точки зрения теории групп. Уравнение решаемо в радикалах в том, и только том случае, если его группа Галуа имеет серию особых подгрупп (именуемых «нормальными»), такую, что конечная подгруппа содержит всего одну перестановку и число перестановок в каждой последующей подгруппе равно числу перестановок в предыдущей, деленному на некоторое простое число. Идея доказательства состоит в том, что нужны только простые радикалы – к примеру, корень шестой степени есть квадратный корень из кубического корня, при этом числа 2 и 3 – простые, – и каждый такой радикал снижает размер соответствующей группы делением числа ее членов на соответствующее простое число.
Группа Галуа для обобщенного уравнения четвертой степени, к примеру, содержит все 24 возможные перестановки решений. Эта группа имеет нисходящую цепочку нормальных подгрупп с размерами
24 12 4 2 1
и
24/12 = 2 – простое,
12/4 = 3 – простое,
4/2 = 2 – простое,
2/1 = 2 – простое.
Следовательно, уравнение четвертого порядка решить можно, и в формуле для решения мы ожидаем встретить квадратные (следует из двоек) и кубические (следует из троек) корни, но ничего больше.
Группы для квадратных и кубических уравнений меньше по размеру и опять же имеют нисходящие цепочки нормальных подгрупп, размеры которых изменяются делением на простые числа. А что с уравнением пятой степени? У него пять решений, что дает нам 120 перестановок. Единственная цепочка нормальных подгрупп имеет размеры
120 60 1.
Поскольку 60/1 = 60 – не простое число, решений в радикалах у такого уравнения быть не может.
На самом деле Галуа не стал записывать доказательства того, что уравнение пятой степени не может быть решено в радикалах. Это уже доказал Абель, и Галуа знал об этом. Вместо этого он разработал обобщенную теорему, характеризующую все уравнения простых степеней, которые могут быть решены в радикалах. Показать, что обобщенное уравнение пятой степени не входит в число этих уравнений, – пустяк для Галуа настолько тривиальный, что он об этом даже не упоминает.
Значение Галуа для математики определяется не столько теоремами, сколько его методом. Его группа перестановок – сегодня мы называем ее группой Галуа – состоит из всех перестановок корней, сохраняющих алгебраические отношения между ними. В более общем плане, если задан некоторый математический объект, мы можем рассматривать все преобразования – может быть, перестановки, может быть, нечто более геометрическое, к примеру жесткое перемещение, – которые сохраняют его структуру. И совокупность таких преобразований называется группой симметрии объекта. Понятие «группа» здесь определяется одним конкретным свойством групп перестановок Галуа, которое он подчеркивал, но не развил в более общую концепцию. Суть в том, что последовательность двух любых симметричных преобразований всегда дает симметричное преобразование.
В качестве простого геометрического примера возьмем квадрат на плоскости и будем преобразовывать его при помощи различных жестких перемещений. Вы можете сдвигать этот квадрат, вращать его, можете даже перевернуть. При каких движениях из этого набора квадрат остается совершенно неизменным с виду? Сдвиг не годится; центр квадрата при этом перемещается в другое место. Вращать можно, но только на один или несколько прямых углов. Любой другой угол приведет к наклону квадрата, которого прежде не было. Наконец, квадрат можно перевернуть относительно любой из четырех осей: двух диагоналей и прямых, проходящих через центры противоположных сторон. Добавив еще тривиальное преобразование типа «ничего не трогать», получим ровно восемь симметрий.
Проделайте эту же процедуру с правильным пятиугольником – и получите 10 симметрий; для правильного шестиугольника их будет 12 и т. д. Круг имеет бесконечное множество симметрий: поворот на любой угол и переворот относительно любого диаметра. У разных фигур может быть разное число симметрий. Мало того, в игру вступают и более тонкие свойства, чем просто число симметрий, – следует учитывать не только то, сколько имеется симметрий, но и то, как они сочетаются.
Читать дальшеИнтервал:
Закладка: