Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков
- Название:Значимые фигуры. Жизнь и открытия великих математиков
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9060-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков краткое содержание
Значимые фигуры. Жизнь и открытия великих математиков - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Кто же был противником Галуа? Сведения об этом путаны и обрывочны. Александр Дюма в своих мемуарах говорит, что это был собрат-республиканец по имени Пешо д’Эрбенвиль. Что вновь возвращает нас к заметке в Le Precursor и загадочному убийце, обозначенному в ней «L. D.» Буква «D» могла бы, в принципе, относиться к д’Эрбенвилю, но даже если так, тогда «L» – еще одна ошибка в и без того неточной статье. Тони Ротман довольно убедительно доказывает, что «D» означает Дюшатле, хотя «L» при этом вызывает вопросы. Почему нет, известно немало случаев, когда дружба распадалась из-за женщины. Дрались на пистолетах – на 25 шагах, согласно результатам вскрытия, или в формате «русской рулетки», если верить заметке в Le Precursor . Косвенные данные подтверждают скорее второй вариант, поскольку Галуа был поражен в живот, что не так просто сделать с 25 шагов, но, если стрелять практически в упор, попадание гарантировано. Галуа умер на следующий день от перитонита, отказавшись от общения со священником, и был похоронен в общем рве на кладбище Монпарнас.
Накануне дуэли Галуа подытожил свои открытия в письме к Шевалье. Там он коротко рассказывает, как при помощи групп можно узнать, решаемо ли данное полиномиальное уравнение в радикалах, и касается других открытий – эллиптических функций, интегрирования алгебраических функций; есть там и непонятные намеки, о смысле которых мы можем только догадываться. Письмо заканчивается так:
Попросите Якоби или Гаусса публично высказать свое мнение не в том смысле, верно это или нет, а в смысле важности этих теорем. Позже найдутся, надеюсь, какие-то люди, которые поймут, как это полезно, и разберутся во всей этой неразберихе.
К счастью для математики, такие люди нашлись. Первым из тех, кто по достоинству оценил достижения Галуа, был Жозеф-Луи Лиувиль. В 1843 г. Лиувиль выступил ровно перед теми же людьми, которые умудрились потерять или отвергнуть три рукопись Галуа. «Я надеюсь заинтересовать Академию, – начал он, – объявлением о том, что среди бумаг Эвариста Галуа я обнаружил решение, столь же точное, сколь и глубокое, следующей красивой задачи: существует ли решение [некоторого уравнения] в радикалах». Вскоре Якоби тоже прочел бумаги Галуа и, как Галуа и надеялся, понял их важность. К 1856 г. теорию Галуа преподавали на аспирантском уровне и во Франции, и в Германии. А в 1909 г. Жюль Таннери, директор Нормальной школы, открыл памятник Галуа в его родном городе Бур-ля-Рене; при этом он поблагодарил мэра города за «возможность принести извинения гению Галуа от имени школы, куда он поступил без всякой охоты, где не встретил понимания и откуда был изгнан, но для которой стал в конечном итоге одним из самых ярких имен».
Итак, что же сделал Галуа для математики?
Его идеи не были абсолютно неслыханными; это вообще редко случается в математике. Как правило, математики строят свои теории на базе подсказок, намеков и предположений предшественников. Удобной отправной точкой здесь может стать Ars Magna Кардано, где были предложены решения для алгебраических уравнений третьей и четвертой степени. Сегодня мы записываем эти решения в виде формул и выражаем через коэффициенты. Ключевая особенность этих формул состоит в том, что решение в них выстраивается с использованием стандартных операций алгебры – сложения, вычитания, умножения и деления, а также квадратных и кубических корней. Естественно предположить, что решение уравнения пятой степени тоже можно выразить такой формулой, в которой, скорее всего, будут присутствовать также корни пятой степени. (Корень четвертой степени – это квадратный корень из квадратного корня, так что сам по себе он избыточен.) Многие математики (в том числе любители) искали эту неуловимую формулу. Чем выше степень, тем сложнее становятся формулы, так что можно было ожидать, что формула для уравнения пятой степени будет особенно замысловатой. Но время шло, а отыскать эту формулу никто не мог. Постепенно до ученых начало доходить, что у длинной череды неудач может быть вполне объективная причина: это была попытка отыскать в темной комнате черную кошку, которой там нет, то есть найти то, чего на свете в принципе не существует.
Сказанное не означает, что уравнение не имеет решений. Любое уравнение пятой степени имеет по крайней мере одно действительное решение – и всегда имеет ровно пять решений, если разрешить комплексные числа и правильно учесть кратные решения. Но эти решения невозможно заключить в алгебраическую формулу, в которой не используется ничего более сложного, чем радикалы.
Первое серьезное свидетельство в пользу того, что дело может обстоять именно так, появилось в 1770-е гг., когда Лагранж написал длинный трактат об алгебраических уравнениях. Вместо того чтобы просто отметить, что традиционные решения верны, он задался вопросом о том, почему эти решения вообще существуют. Какие особенности уравнения делают его разрешимым в радикалах? Он унифицировал классические методы решения для второй, третьей и четвертой степеней, соотнеся их с особыми выражениями в формулах решения, которые при перестановке решений ведут себя довольно интересно. В качестве тривиального примера заметим, что сумма решений будет одинаковой, в каком бы порядке мы их ни записали. Как и произведение. Алгебраисты-классики доказали, что любое полностью симметричное выражение, подобное этим, всегда может быть выражено через коэффициенты уравнения, без всякого использования радикалов.
Более интересным примером для кубического уравнения с решениями a 1, a 2, a 3является выражение
( a 1 – a 2) ( a 2 – a 3) ( a 3 – a 1).
Если мы переставим решения циклически, так что a 1→ a 2, a 2→ a 3, a 3→ a 1, значение этого выражения не изменится. Однако, если мы поменяем два из них местами, так что a 1→ a 2, a 2→ a 1, a 3→ a 3, выражение поменяет знак. То есть как бы домножится на –1, а в остальном останется неизменным. Следовательно, его квадрат полностью симметричен и должен выражаться некоторым образом через коэффициенты. Это помогает объяснить, почему в формулу Кардано для решения кубических уравнений входят квадратные корни. Другое частично симметричное выражение объясняет присутствие там кубических корней.
Развивая эту идею, Лагранж нашел общий метод решения уравнений квадратных, кубических и четвертой степени с использованием перестановочных свойств конкретных выражений в решениях. Он показал также, что этот метод не работает для уравнений пятой степени. Он приводит не к более простому уравнению, а, наоборот, к более сложному, лишь усугубляя проблему. Это не означает, что такое уравнение невозможно решить никаким иным способом, но это уже явный намек на потенциальные проблемы.
Читать дальшеИнтервал:
Закладка: