Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Название:Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-455-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Геометрически действительные числа образуют прямую, а комплексные – плоскость, причем вещественная прямая является одной из двух осей на этой плоскости. Алгебраически комплексное число – просто пара действительных чисел со своими формулами для выполнения над ними действий сложения или умножения.
В наши дни признанные полноправными комплексные числа быстро распространяются среди математиков, потому что значительно упрощают подсчеты, избавляя от необходимости отдельно рассматривать положительные и отрицательные числа. Сегодня комплексные числа наряду с исчислением комплексных функций постоянно применяются как привычный инструмент почти во всех отраслях технических наук.
Глава 11. Прочные основы
Около 1800 математикови физиков превратили исчисление в незаменимый инструмент познания мира, и возникшие в этой области проблемы дали толчок к открытию принципиально новых концепций и методов (например, способов решения дифференциальных уравнений), превративших исчисление в самую яркую и многообещающую область математики. Красота и сила его неотразимы. Но критические замечания о недостатках его логического обоснования, высказанные епископом Беркли, остались без ответа. А поскольку ученые уже успели продвинуться в более сложные области, здание в целом делалось всё более уязвимым. Первые приверженцы использования бесконечных рядов, еще не отдавая себе отчета в их огромном значении для науки, выдавали как заведомо ошибочные идеи, так и гениальные открытия. Фурье-анализ не имел основ, и разные математики требовали доказательств противоречивых теорем. В ход пошли такие термины, как «бесконечно малая», без четких определений; без конца возникали логические парадоксы; даже такое понятие, как функция, становилось предметом спора. Безусловно, столь плачевная ситуация не могла длиться вечно.
Чтобы разобраться в этом хаосе, требовались ясная голова и непоколебимая готовность заменить интуитивные построения точным знанием, даже ценой понимания. Главными игроками на этом поле стали Бернард Больцано, Коши, Нильс Абель, Петер Дирихле и – более всех – Вейерштрасс. Благодаря их усилиям к 1900 г. даже самые сложные манипуляции с рядами, пределами, производными и интегралами стали выполняться без опаски, четко и без парадоксов. Появилась новая отрасль математической науки – анализ. Исчисление стало одним из центральных ее аспектов; получили логическое обоснование такие отвлеченные и фундаментальные концепции, как непрерывность и пределы, лежащие в основе идеи исчисления. А вот бесконечно малые величины были запрещены.
Фурье
Пока Фурье не взбаламутил омут, математики купались в приятной уверенности, будто они точно знают, что такое функция. Это был некий определенный процесс f , когда берут число х и получают другое, f ( x ). Эти числа х вполне логично зависят от f . Если, например, f ( x ) = 1/ x , то x не может быть равно 0. Если f ( x ) = √ x и мы имеем дело с действительными числами, то x должно быть положительным. Но когда дело дошло до точных определений, математики немного растерялись.
Как мы теперь понимаем, причиной затруднений было то, что они пытались свести сразу несколько различных свойств в единую концепцию функции: не просто сформулировать правило, по которому x связано с другим числом, f ( x ), но найти свойства, которыми обладает это правило: непрерывность, дифференцируемость, возможность быть выраженной в виде формулы и т. д.
В частности, они даже не были уверены, как трактовать функции, имеющие разрыв, например:
f ( x ) = 0, если x ≤ 0; f ( x ) = 1, если x > 0.
Эта функция внезапно скачет от 0 к 1, как только x минует 0. Все почему-то считают, что явной причиной такого прыжка становится изменение формулы: от f ( x ) = 0 к f ( x ) = 1. Интуитивно казалось, что это единственное объяснение появления такого скачка; что любая одинарная формула автоматически избавит нас от таких скачков, а значит, небольшое изменение x всегда повлечет за собой небольшое изменение f ( x ).
Еще одним источником трудностей стали комплексные числа, где – как мы уже видели – такие естественные функции, как квадратный корень, имеют два значения, а комплексные логарифмы – бесконечное множество таковых. Очевидно, что логарифм должен быть функцией, но когда есть бесконечное множество значений , по какому правилу мы получаем f ( z ) из z ? Выходит, таких правил тоже должно быть бесконечно много, и все одинаково годные. Для разрешения всех этих умозрительных разногласий математикам предстояло переломать немало копий. И не кто иной, как Фурье, сумел разом решить их, предложив гениальный ход: расписать любую функцию через бесконечный ряд синусов и косинусов, открытый им в ходе изучения теплопроводности.
Благодаря своей интуиции ученого Фурье понял, что его метод должен быть универсален. Теоретически вы можете представить себе, что удерживаете температуру металлического стержня на значении 0° на одной половине, но при этом сохраняете 10°, или 50°, или сколько необходимо, на остальной его длине. Физиков до сих пор не интересовали разрывные функции, чьи формулы внезапно меняются. Они вообще не имели обыкновения работать с формулами. Мы прибегаем к ним для отображения физической реальности, но это всего лишь техника, наш образ мышления. Конечно, температура окажется иной на стыке этих двух зон, но математические модели всегда имеют какие-то допущения по отношению к физической реальности. Метод Фурье для тригонометрических рядов, приложенный к разрывной функции такого рода, судя по всему, принес ощутимые результаты. Стальные стержни действительно продемонстрировали точно такое распределение температуры, как предсказывало его уравнение теплопроводности, решенное с помощью тригонометрических рядов. В своей «Аналитической теории тепла» он четко описал свою позицию: «В общем, функция f ( x ) представляет последовательность значений, или ординат, каждая из которых произвольна. Мы не предполагаем, что эти ординаты подлежат общему закону. Они взаимодействуют между собой каждый раз по-своему».

Прямоугольная волна и некоторые ее Фурье-аппроксимации
Отважное утверждение; к сожалению, приведенное доказательство идеи не имело достаточно убедительной математической базы. Фактически оно оказалось еще более ошибочным, чем аргументы Эйлера или Бернулли. Если утверждение Фурье соответствовало истине, то его ряды в итоге могли стать общим законом для разрывных функций. Функция, приведенная выше, со значениями 0 и 1, имеет периодическую родственную прямоугольную волну. И эта волна характеризуется единственным рядом Фурье, причем вполне изящным, работающим одинаково надежно и там, где функция равна 0, и там, где она равна 1. Иными словами, функция, которая кажется представленной двумя разными законами, может быть переписана в рамках одного правила.
Читать дальшеИнтервал:
Закладка: