Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Этот пример еще раз показывает, что когда результат является по-настоящему неожиданным, его очень трудно понять и принять, - трудно даже тому, кто расположен слушать.
ДЖОРДЖ КИНГСЛИ ЦИПФ (1902 – 1950)
Американский ученый Джордж Кингсли Ципф начинал свою научную карьеру филологом, однако впоследствии переименовал себя в «эколога – статистика человека». В течение двадцати лет он преподавал в Гарвардском университете и успел незадолго до смерти издать (по всей видимости, за собственный счет) свой главный труд «Человеческое поведение и принцип наименьшего усилия» (см. [615]).
Это одна из тех книг ([152] можно отнести к этому же разряду), в которых искры гениальности, озаряющие многие прежде темные закоулки, теряются в нагромождениях сумасбродных идей и нелепых крайностей. С одной стороны, в ней обсуждается форма половых органов и оправдывается насильственное включение Австрии в состав фашистской Германии (причем в качестве главной причины называется улучшение соответствия некой математической формулы). С другой стороны, она доверху набита цифрами и таблицами, всевозможными способами, указывающими на существование эмпирического закона, который заключается в том, что наилучшее сочетание математического удобства и эмпирического соответствия в социологической статистике достигается использованием масштабно-инвариантного распределения вероятностей. Некоторые примеры из книги Ципфа рассматриваются в главе 38.
В «законах Ципфа» ученые – естествоиспытатели видят аналоги скейлинговых законов – которые, будучи подкреплены экспериментальными данными, вовсе не вызывают у физиков и астрономов каких-либо особенных эмоций. Таким образом, физикам будет весьма сложно вообразить, насколько яростным оказалось противодействие, когда Ципф – как и незадолго до него Парето – применил тот же подход (с теми же результатами) к общественным наукам. До сих пор не прекращаются разнообразные попытки авансом дискредитировать всякие экспериментальные данные, полученные с помощью дважды логарифмических графиков. Я, со своей стороны, полагаю, что этот метод не вызвал бы столь ожесточенной полемики, если бы не выводы, к каким он неизбежно подталкивает. К сожалению, дважды логарифмический линейный график указывает на распределение, бросающее прямой вызов гауссовой догме, которая успела за долгие годы привыкнуть к безраздельному царствованию и не терпит соперников. Практикующие статистики и социологи предпочли проигнорировать открытия Ципфа, чем отчасти и объясняется то поразительное отставание в развитии, какое мы наблюдаем ныне в общественных науках.
Ципф проявил достойный энциклопедистов пыл при сборе примеров проявлений гиперболических законов в общественных науках и непреклонную стойкость при защите своих открытий (равно как и аналогичных открытий, сделанных другими) от посягательств недругов. Однако читателю настоящего эссе, без сомнения, уже ясно, что фундаментальная идея Ципфа в корне неверна. Феномены, изучаемые общественными науками, далеко не всегда демонстрируют гиперболическую плотность распределения, в случае же явлений природы плотность распределения далеко не всегда оказывается гауссовой. Еще более серьезным недостатком является то, что Ципф не объединил свои открытия в стройную логически осмысленную структуру, а лишь связал их друг с другом с помощью пустых словесных рассуждений.
Одним из поворотных событий своей жизни (см. главу 42) я считаю прочтение очень мудрой рецензии на «Человеческое поведение», написанной математиком Дж. Л. Уолшем. Эта рецензия, посвященная, в основном, положительным сторонам книги, оказала большое влияние на мою тогдашнюю научную работу, косвенные последствия чего я ощущаю до сих пор. Таким образом, можно сказать, что я многим обязан Ципфу, но лишь благодаря посредничеству Уолша.
В остальном же влияние Ципфа вряд ли окажется сколько-нибудь значительным. Его пример может служить наглядной – если не карикатурной – демонстрацией тех чрезвычайно сложных проблем, которые неизбежно сопутствуют всякой попытке междисциплинарного подхода в науке.
Я искренне надеюсь, дорогой читатель,
что ты задашь еще много вопросов на мои ответы.
Этот рисунок, датированный 30 января 1964 года,
публикуется с любезного разрешения мсье Жана Эффеля.
41 ИСТОРИЧЕСКИЕ ОЧЕРКИ
«Завершив строительство здания, следует убрать леса». Это изречение Гаусса часто приводят себе в оправдание те математики, которые избегают рассказывать о причинах, побуждающих их заниматься теми или иными исследованиями, и забывают об истории своей области. К счастью, в последнее время набирает силу иная тенденция, и многочисленные отступления в данном эссе служат красноречивым показателем того, какой из двух сочувствую лично я. Как бы то ни было, у меня осталось несколько историй, которые слишком велики для отступлений, но могут оказаться занятными и поучительными. Сюда входят и разрозненные трофеи, собранные мною во время библиотечных набегов, спровоцированных моим нынешним увлечением Лейбницем и Пуанкаре.
АРИСТОТЕЛЬ И ЛЕЙБНИЦ, ВЕЛИКАЯ ЦЕПЬ БЫТИЯ, ХИМЕРЫ И ФРАКТАЛЫ
В серьезных научных работах давно уже не требуется обязательная ссылка на Аристотеля и Лейбница. Однако раздел этот, как ни странно, написан отнюдь не шутки ради. Некоторые фундаментальные понятия теории фракталов можно рассматривать как математическую реализацию тех восходящих еще к Аристотелю и Лейбницу идей, одновременно глубоких и широких, которые пронизывают всю нашу культуру и оказывают воздействие даже на людей, считающих себя невосприимчивыми к философским веяниям.
Первую нить я обнаружил у Бурбаки [49]: идея дробного интегро – дифференцирования, рассмотренного нами в главе 27, пришла Лейбницу в голову вскоре после того, как он разработал свою версию дифференциального исчисления и предложил обозначения d kF/dx k и (d/dx) kF . В письме Лейбница де Лопиталю от 30 сентября 1695 года (см. [296], II, XXIV, с. 197 и далее) сказано (в моем вольном переводе) приблизительно следующее: «Похоже, Иоганн Бернулли уже сообщил тебе о том, как я рассказал ему об одной удивительной аналогии, используя которую, можно сказать, что последовательные дифференциалы образуют в некотором роде геометрическую прогрессию. Можно задаться вопросом, каким же будет дифференциал, обладающий дробным показателем. Оказывается, такой дифференциал можно выразить в виде бесконечного ряда. Этот результат, на первый взгляд, далек от геометрии, которой пока еще ничего неизвестно о дробных показателях, однако можно предположить, что настанет день, когда эти парадоксы принесут какие-нибудь полезные плоды, - совершенно бесполезных парадоксов, как тебе известно, не бывает. Идеи, малозначащие сами по себе, вполне могут дать толчок идеям более значительным и красивым». Дальнейшее развитие эти соображения получили в письме Лейбница Иоганну Бернулли от 28 декабря 1695 года (см. [296], III.I, с. 226 и далее).
Интервал:
Закладка: