Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С. Латте, современник Фату и Жюлиа, выделил отношение четвертого порядка полиномов, итерации которых «хаотичны» на всей плоскости, т.е. не притягиваются ни к какому меньшему множеству. Этот пример побуждает нас заняться поисками хаотического поведения в отображениях низшего порядка. Кроме того, в настоящем разделе рассматриваются классы универсальности для формы островов при λ - отображениях.

Отображение z→λ(z−1/z) и его λ - отображение.В особом случае λ=½ функция y=−iz следует правилу y→½(y+1/y) , которое вытекает также из приложения метода Ньютона к отысканию корней z 2 −1 . Отметим, что можно положить z=ctgθ , и выражение (z−1/z) примет вид (cos 2θ−sin 2θ)/2cosθsinθ=ctg2θ . Таким образом, запись z→(z−1/z) представляет собой просто-напросто занятный способ записать θ→2θ . Для рассмотрения других значений λ было построено отображение, аналогичное тем, что представлены на рис. 268 и 269; часть его можно видеть на рис. 12.

Наблюдается очень интересная форма «универсальности»: «молекулы-острова» на рис. 12 принимают в точности ту же форму, что и при квадратичном отображении. То есть иллюстрации 12 и 268 – 269 построены из одинаковых «кирпичей». В открытом диске |λ|>1 итерации отображения z→λ(z−1/z) уходят в бесконечность за исключением точек Z 0 , образующих пыль. В белом диске |λ+i/2|<1/2 итерации имеют две предельные точки. Когда значение λ приходится на один из «отростков» черной «короны», существует некоторая предельная окружность, диаметр которой больше 2, но не слишком велик. Значения же λ , оказавшиеся внутри короны λ - отображения, дают хаотическое движение.

Вычисление можно упростить следующими допущениями. А) Значение λ , приводящее к очень большой окружности, приходится на внутреннюю область столь малого атома, что его и разыскивать-то не стоит. Б) Все практически значимые малые окружности располагаются «вблизи» точки z=0 . Таким образом, можно предположить, что любая орбита, уходящая «далеко» от точки z=0 , хаотична. Это приближение, разумеется, лишено конкретного обоснования, однако получаемое с его помощью λ - отображение состоит из знакомых элементов, и значит, такой метод представляется вполне разумным.

Множества Жюлиа отображения λ(z−1/z) .При |λ|>1 притягивающей точкой становится бесконечность, а множество Жюлиа представляет собой, как и в главе 19, границу множества z - точек, не уходящих в бесконечность. Пример множества Жюлиа, определенного как граница областей притяжения отображения z→λ(z−1/z) , представлен на рис. 10.

Классы «универсальности» λ - отображения.«Молекулы – острова», характерные для отображения z 2 −μ , встречаются и во многих других λ - отображениях, разница будет лишь в том, что в результате каких-то конкретных ограничений может образоваться не совсем типичный «континент».

Кроме того, λ - отображения вида z→z m −λ также дают континент и острова. В этом случае, однако, каждое значение m обуславливает очень характерную форму атомов и молекул – островов.

Когда локальное поведение отображения z→f(z) одинаково во всех критических точках z , где f'(z)=0 , форма островов определяется локально. Когда f(z) ведет себя в различных критических точках z по-разному, λ - отображение строится из «универсальных кирпичей более чем одного типа. Мы как раз разыскиваем для этой проблемы что-то вроде «таблицы Менделеева».

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x