Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Неоценимую и разнообразную помощь в подготовке иллюстраций оказали и другие - фото 204

Неоценимую и разнообразную помощь в подготовке иллюстраций оказали и другие люди, которых я также перечислю в хронологическом порядке. Хирш Левитан участвовал в создании рис. 410 и 411. Косвенное участие в подготовке некоторых рисунков принимал Джеральд Б. Лихтенбергер. Автором рис. 377 является Жан – Луи Онето, работавший с весьма новаторским графическим пакетом, разработанным Сирилом Н. Альбергой. Рис. 379 представляет собой несколько переработанную версию рисунка, созданного Артуром Аппелем и Жаном – Луи Онето. Скотт Киркпатрик предоставил нам рисунок, помещенный на с. 193, и программы, хорошо послужившие нам при подготовке рис. 312 – 315 и 424 – 427. Питер Оппенгеймер принял участие в создании изображений, помещенных на с. 247. Питер Молдейв помог с рис. 268 – 270, а Дэвид Мамфорд – с рис. 254.

Рис. 8 и иллюстрация на предпоследней странице выполнены В. А. Нортоном.

БЛАГОДАРНОСТИ

В противоположность книгам, при написании которых автор четко представляет себе широту охватываемого материала и заранее определяет стиль изложения, настоящее «macedoine de livre» возникало отдельными этапами в течение долгого времени. Главные свои интеллектуальные долги я уже так или иначе признал – непосредственно в тексте или между строк, в отступлениях или в исторических и биографических очерках. Само их количество и постоянно растущее разнообразие указывают на то, что никакой из них нельзя считать преобладающим.

Следует, однако, заметить, что вследствие превратностей цитирования я невольно пренебрег такими именами, как Норберт Винер и Джон фон Нейман: оба весьма снисходительно отнеслись к моей работе и оказали на меня немалое влияние, причем, скорее, общим своим примером, нежели какими-то конкретными поступками.

Огромное влияние в интеллектуальном отношении, хотя и совершенно иного рода, которое еще нигде не было должным образом отмечено, оказали на меня также мои дядя и брат.

Черновой перевод первой (французской) версии настоящего эссе был сделан Ж. С. Лури. Р. У. Госпер из Стэнфорда показал мне свою кривую Пеано еще до публикации. Значительной и разнообразной помощью в работе я обязан М. П. Шютценбергеру из Парижа, Дж. Э. Марсдену из Беркли, М. Ф. М. Осборну из USNRL, Жаку Пейрье из Орсэ, И. Гефену и А. Ахарони из Телль-Авива, а также Д. Мамфорду и П. Молдейву из Гарварда.

П. Л. Ренц, редактор издательства W. Р. Freeman & Co., сумел доказать, что его профессиональная гильдия еще не совсем безнадежна. Я благодарен ему за то, что он согласился на тот идиосинкразический макет, с каким я решил поэкспериментировать. Также я очень благодарен Р. Исикаве, который также работает у Фримена.

На интересные цитаты мне указывали: М. В. Берри, К. Брехер, И. Б. Коэн, Х. де Лонг, М. Б. Гирсданский, А. Б. Мидор, Дж. С. Понт, М. Серре, Б. Л. Ван–дер-Варден и Д. Зайденвебер. Другие интересные цитаты уже использовали такие авторы, как Г. Биркгоф, Р. Бонола, Й. Бромберг, К. Фадиман, Т. Феррис, Дж. Гимпел, С. Дж. Глакен, Д. М. Джонсон, П. С. Стивенс и Э. Т. Уиттекер.

Ровному ходу этой работы способствовали М. С. Гутцвиллер, П. Э. Сейден, Дж. А. Армстронг и П. Чаудхари – начальники отделов в IBM.

Д. Ф. Бантц посмеивался над тем, как мы использовали цветное графическое оборудование его проекта. А И. М. Коули, С. Х. Томпсон, П. Дж. Чапек, Дж. К. Ривлин и другие сотрудники библиотеки, отдела обработки текстов и графического отдела Исследовательского Центра IBM просто горели желанием помочь и выжимали из своих машин все возможное и невозможное.

УКАЗАТЕЛЬ ИЗБРАННЫХ РАЗМЕРНОСТЕЙ:

евклидовой (E) , фрактальной (D) и топологической (D T )

Полужирными цифрами обозначены главы. Там, где евклидова размерность обозначена через E , она может принимать произвольное положительное целочисленное значение.

I. основные геометрические фигуры и их строгие D и D T Множество/ E/D/D T / Стр. * «Стандартные евклидовы множества, D=D T

Точка (одна)/ E/ 0/0/

Точки (конечное число)/ E/ 0/0/

Счетное множество/ E/ 0/0/

Прямая, окружность; все остальные стандартные кривые/ E/ 1/1/73

Плоский диск; все остальные стандартные поверхности/ E/ 2/2/73

Шар в ℝ 3 или ℝ E ; все остальные стандартные объемы/ E/E/E/

* Множества, не являющиеся (вопреки ожиданиям) фрактальными

Заполняющая плоскость «кривая» Пеано/ 2/2/2/7, 183, 189

Канторова чертова лестница/ 2/1/1/125

Чертова лестница Леви/ 2/1/1/399

Обыкновенный броуновский след в / 1/1/1/

Дробный броуновский след в ℝ E , где H<1/E/E/E/E/ 354

* Неслучайные фрактальные множества, D>D T

Канторова пыль: троичное множество на прямой/1/ln2 / ln3 / 0/114 и д.

Канторовы пыли: нетроичные/ E/0 0/116 и д.

Кохова кривая: троичная снежинка/ 2/ln4 / ln3 / 1/6

Кохова кривая: граница перекошенной снежинки/ 2/ln4 / ln3 / 1/109, 110

Кохова кривая: шкура дракона Хартера - Хейтуэя/ 2/1,5236/ 1/101, 102

Коховы кривые в ℝ 2 , нетроичные/ 2/ 1 1/6

Салфетка и стрела Серпинского/ 2/ln3 / ln2 / 1/14

Чудовищные кривые Лебега - Осгуда/ 2/2/1/15

Чудовищные поверхности Лебега - Осгуда/ 3/3/2/15

* Случайные фрактальные множества

Броуновские фракталы из прямой в E - пространство:////

- след при E≥2/E/ 2/1/327

- функция в ℝ 2 / 2/ 3/2/ 1/333

- функция в ℝ E−1 , где E>2/E/ 1+(E−1)/2/ 1/541

- нуль-множество функции из прямой в прямую/ 1/ 1/2/ 0/332

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x