Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, Вейерштрасс – единственный законный претендент, и некому оспорить правомочность именования рассматриваемой функции в его честь, однако в свете известных нам весьма странных событий здесь есть над чем поразмыслить. Больцано и в самом деле опубликовал некое выражение, полагая его безобидным, но двое других – скромный провинциал, которому незачем было беспокоиться за свою научную репутацию по причине полного отсутствия таковой, и гроссмейстер, который, скорее всего, ясно осознавал, что его научную репутацию ничто запятнать не сможет, - несомненно понимали, что оказалось у них в руках, и все же предпочли промолчать и выждать. Принцип «публикуйся или пропадай» был им, судя по всему, чужд как ничто другое.
Поскольку функция Вейерштрасса часто используется в качестве аргумента в призывах к «разводу по обоюдному согласию» между математикой и физикой, представляется уместным упомянуть об отношении ее первооткрывателя к взаимосвязи между этими двумя путями постижения мира. Имя Вейерштрасса можно встретить в геометрической оптике (точки Юнга – Вейерштрасса на сферической линзе). Кроме того, в своей вступительной лекции в 1857 г. (выдержки из которой приводятся у Гильберта [214], том 3, с. 337 – 338) Вейерштрасс особо подчеркивал, что физикам не следует видеть в математике всего лишь вспомогательную дисциплину, а математикам не стоит рассматривать вопросы физиков, как удобные примеры к своим методам. «На вопрос, возможно ли в действительности извлечь что-нибудь полезное из абстрактных теорий, которыми, на первый взгляд, так увлечена современная [1857 г.] математика, можно ответить, что основываясь на одних только абстрактных умопостроениях, греческие математики вывели свойства конических сечений, причем случилось это задолго до того, как было установлено, что по траекториям, имеющим форму конических сечений, движутся планеты вокруг Солнца». Amen.
42 ЭПИЛОГ: ПУТЬ К ФРАКТАЛАМ
В эссе о фракталах, написанных мною в 1975 и 1977 г., не было ни вступительного слова, ни заключения. Нет их и в настоящем эссе, однако мне хотелось бы сказать кое-что еще. Теперь, когда фрактальная геометрия находится в опасной близости от черты, перейдя которую, она неминуемо превратится в упорядоченную и благопристойную науку, самое время занести на скрижали краткую историю ее невероятного зарождения. И добавить несколько слов о ее относительном вкладе в научное понимание, описание и объяснение природных феноменов. Пока новая геометрия наступает по всем фронтам от описания до объяснения (общего, как в главах 11 и 20, или учитывающего специфические особенности того или иного прецедентного исследования), неплохо было бы припомнить, почему необычное (и непопулярное) пренебрежение к объяснению посредством «моделей» с самого начала шло ей только на пользу.
К настоящему моменту читатель уже, несомненно, хорошо знает, что характерное для фракталов распределение вероятностей следует гиперболическому закону, и что в теории фракталов в изобилии встречаются и другие соотношения, основанные на степенных законах. Признав действительность масштабной инвариантности и тщательно исследуя ее геометрически-физические воплощения, мы вдруг открываем для себя такое множество увлекательнейших занятий, что мне кажется чрезвычайно странным, как еще вчера все эти богатейшие новые земли принадлежали мне одному (по крайней мере, такое создавалось впечатление). Вокруг моих новых земель располагалось множество населенных и освоенных участков, а некоторые смельчаки даже пробирались через границу, осматривались и уходили прочь – никто не оставался надолго.
Это увлечение на всю жизнь началось с того, что в 1951 г. меня слегка заинтересовала закономерность, описывающая частотность употребления слов в речи, называемая законом Ципфа (см. главы 38 и 40), причем узнал я о ней из книжного обозрения. Сопутствующие обстоятельства представляются мне сейчас настолько символичными, что я начинаю сомневаться в том, так ли оно все и происходило. Упомянутое обозрение я выудил из корзины для ненужных бумаг одного «чистого» математика, имея в виду разжиться легким чтением на время поездки в парижском метро. Закон Ципфа оказалось несложным объяснить, а в качестве побочного эффекта моя работа поспособствовала рождению новой дисциплины – математической лингвистики. Однако изучение частотности употребления слов – это предприятие из разряда тех, что сами себя закрывают.
Как бы то ни было, последствия этого легкого интереса я продолжаю ощущать до сих пор. Осознав, что проделанная мною работа явилась (используя нашу теперешнюю терминологию) прецедентным исследованием полезности скейлинговых допущений, я начал обращать внимание на аналогичные эмпирические закономерности в различных областях человеческой деятельности, причем начал с экономики. Хотя этих закономерностей обнаруживается поразительно большое количество, в «организованной» науке принято считать их всего лишь незначительными отклонениями. Чем успешнее были мои объяснения упомянутых закономерностей, тем более явственно вырисовывался силуэт некого повсеместно распространенного феномена, который упорно отказывается признавать официальная наука и которому я мог на некоторое время посвятить свое время и энтузиазм.
Поначалу мои исследования заключались в обычном поиске подходящей порождающей модели, однако постепенно от такого подхода пришлось отказаться, так как я раз за разом сталкивался с ситуациями, когда малейшие изменения в, казалось бы, незначительных допущениях модели вызывали самые, что ни на есть кардинальные перемены в результатах предсказания. Например, многочисленные случаи появления гауссова распределения было принято «объяснять» с помощью стандартной центральной предельной теоремы – т.е. гауссово распределение представлялось как результат сложения многих независимых составляющих. Подобная аргументация обладала хоть какой-то объяснительной ценностью лишь постольку, поскольку исследователи – практики понятия не имели о всевозможных других центральных предельных теоремах, которые Поль Леви и прочие пионеры теории вероятности считали «патологическими». Между тем, изучение скейлинговых законов привело меня к убеждению, что естественным как раз является нестандартное центральное предельное поведение. К сожалению, как только стало ясно, что использование центральной предельной теоремы дает несколько возможных вариантов объяснения, такой подход потерял всю свою привлекательность и убедительность. Едва ли объяснение способно что-либо объяснить, если оно оказывается сложнее своего результата и если из равновероятных исходных вариантов следуют абсолютно различные предсказания.
Интервал:
Закладка: