Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эрмит.Репутация Шарля Эрмита как архиконсерватора от математики (см. его письмо Стилтьесу в главе 6) подтверждается также его письмами, адресованными Миттаг – Леффлеру (см. [119]).

13 апреля 1883 г.: «Читать писания Кантора – сущая пытка … и ни у кого из нас не возникает искушения подражать ему … . Соответствие между прямой и плоскостью абсолютно нас не трогает, и мы полагаем, что это наблюдение (по крайней мере, до тех пор, пока никто не сделал из него никаких выводов) протекает из рассмотрения материй настолько произвольных, что автору было бы лучше воздержаться от его обнародования …. Однако Кантор вполне может найти читателей, которые станут изучать его работы с интересом и удовольствием, чего о нас сказать, увы, нельзя».

5 мая 1883 года: «Перевод статьи Кантора был отредактирован Пуанкаре со всей тщательностью …. Он полагает, что почти всем читателям – французам будут чужды изыскания Кантора, сочетающие в себе философию с математикой и носящие чрезмерно произвольный характер. Я думаю, что Пуанкаре прав».

Пуанкаре.Красноречивое и в коечном счете чрезвычайно плодотворное развитие идей Евклида было представлено Пуанкаре в 1903 г. (см. [478], глава III, раздел 3) и в 1912 г. (см. [479], часть 9). Позволю себе процитировать кое-что в моем вольном переводе.

«Что мы имеем в виду, говоря, что размерность пространства равна трем? Если для разделения континуума C достаточно рассмотреть в качестве сечений определенное количество различных элементов, мы говорим, что размерность такого континуума равна единице …. Если же … для разделения континуума достаточно взять сечения, образующие один или несколько континуумов с размерностью, равной единице, мы говорим, что размерность континуума C равна трем; и так далее.

Для обоснования этого определения необходимо выяснить, как именно геометры вводят в начале своих работ понятие размерности. Итак, что же мы видим? Как правило, они начинают с определения поверхностей как границ тел либо участков пространства, кривых – как границ поверхностей, точек – как границ кривых, причем утверждают, что далее эту процедуру продолжить невозможно.

Это в точности совпадает с определением, приведенным выше: для разделения пространства необходимы сечения, называемые поверхностями; для разделения поверхностей – сечения, называемые кривыми; точку же разделить нельзя, так как она не является континуумом. Поскольку кривые разделяются сечениями, которые не являются континуумами, размерность кривых равна единице; поскольку поверхности разделяются непрерывными сечениями с размерностью, равной единице, размерность поверхностей равна двум; и, наконец, пространство можно разделить непрерывными сечениями, обладающими двумя измерениями, следовательно, пространство является континуумом с размерностью, равной трем».

Вышеприведенные рассуждения неприменимы к фрактальной размерности. Для внутренних областей всевозможных островов, упоминаемых в нашем эссе, размерности D и D T совпадают, и обе равны двум, однако береговые линии ведут себя совершенно иначе: их топологическая размерность равна единице, а фрактальная – превышает единицу.

От Брауэра до Менгера.А сейчас заглянем в «Теорию размерности» Гуревича и Уоллмена [231]: «В 1913 г. Брауэр построил на интуитивном фундаменте, предложенном Пуанкаре, точное и топологически инвариантное определение размерности, которое для очень широкого класса пространств эквивалентно тому, что мы используем сегодня. Статью Брауэра в течение многих лет никто не замечал. Затем, в 1922 г., независимо от Брауэра и друг от друга концепцию Брауэра воспроизвели Менгер и Урысон, причем с важными уточнениями.

До тех пор смысл термина размерность математики представляли себе довольно расплывчато. Конфигурация считалась E - мерной, если наименьшее количество вещественных параметров, необходимых для описания (неким неопределенным образом) ее точек, равнялось E . Опасность и несостоятельность такого подхода стали очевидными благодаря двум выдающимся открытиям конца XIX в.: канторово однозначное соответствие между точками прямой и точками плоскости и непрерывное отображение интервала на всю площадь квадрата, продемонстрированное Пеано. Первое подорвало всеобщую уверенность в том, что плоскость богаче точками, нежели прямая, и показало, что размерность можно изменять однозначным преобразованием. Второе опровергло убеждение, что размерность можно определить как наименьшее число непрерывных вещественных параметров, требуемых для описания пространства, и показало, что с помощью однозначного непрерывного преобразования размерность можно увеличить.

Остался, однако, открытым один чрезвычайно важный вопрос: возможно ли установить соответствие между евклидовыми пространствами с размерностями E и E 0 , которое сочетало бы в себе признаки построений Кантора и Пеано, т.е. соответствие, которое было бы одновременно однозначным и непрерывным? Вопрос этот можно с полным правом считать ключевым, так как существование указанного преобразования евклидова - пространства в евклидово же -пространство означало бы, что размерность (в ее естественном понимании, заключающемся в том, что размерность E -пространства равна E ) не имеет абсолютно никакого топологического смысла! Как следствие, класс топологических преобразований оказался бы в этом случае чрезмерно широким для того, чтобы остаться хоть сколько-нибудь полезным для практического геометрического применения.

Первое доказательство того, что евклидово -пространство и евклидово E 0 -пространство являются гомеоморфными только в том случае, когда E=E 0 , было дано Брауэром в 1911 г. (см. [57], т.2, с. 430 – 434; особый случай E 0 ≤3 и E>E 0 был рассмотрен в 1906 году Й. Люротом). Однако в этом доказательстве не указывалось в явном виде какое-либо простое топологическое свойство евклидова -пространства, которое отличало бы его от евклидова -пространства и обусловливало бы невозможность гомеоморфизма этих пространств. Более сильный в этом смысле оказалась процедура, предложенная Брауэром в 1913 г., когда он ввел целочисленную функцию пространства, топологически инвариантного по самому своему определению. В евклидовом пространстве эта функция всегда принимает значение E (оправдывая тем самым свое название).

Тем временем Лебег подошел к доказательству того, что размерность евклидова пространства топологически инвариантна, с другой стороны. В 1911 г. (см. [295], т.4, с. 169 – 210) он отметил, что квадрат можно покрыть произвольно малыми "плитками" таким образом, что ни одна точка квадрата не будет содержаться в более чем трех таких плитках; однако если плитки достаточно малы, то, по меньшей мере, каждые три из них имеют общую точку. Аналогичным образом может быть разбит на произвольно малые кирпичики куб в евклидовом -пространстве так, что общую точку будут иметь не более чем E+1 таких кирпичиков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x