Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лебег предположил, что это наименьшее число не может быть меньше E+1 , т.е. при любом разбиении на достаточно малые элементы должна существовать точка, общая для, по меньшей мере, E+1 этих элементов. (Теорема доказана Брауэром в 1913 г.) Теорема Лебега указывает и на топологическое свойство, отличающее евклидово E - пространство от евклидова E 0 - пространства, и тем самым также предполагает топологическую инвариантность размерностей евклидовых пространств».

Об относительных вкладах в развитие теории размерности Пуанкаре, Брауэра, Лебега, Урысона и Менгера можно прочесть в заметках Х. Фрейденталя в [57] (т. 2, глава 6) и Менгера (см. [428], глава 21).

Фрактальная размерность и Дельбёф.Эта история гораздо более проста: фрактальная размерность появилась, практически, во всеоружии из трудов Хаусдорфа. Однако без налета таинственности не обошлось и здесь. В самом деле, у Рассела, например, нет ни единого слова о бурях, что бушевали тогда вокруг Кантора и Пеано, но зато есть любопытное примечание ([506], с. 162): «Дельбёф, правда, говорит о геометриях с размерностями вида m/n , но не указывает при этом никаких источников (Rev. Phil. T. xxxxvi, с. 450)». Дельбёф, стало быть, заслуживает нашего особого внимания (см. также раздел масштабная инвариантность по лейбницу и лапласу), однако и после самых тщательных поисков (в которых мне помогал Ф. Фербрюгген) я не смог обнаружить в работах Дельбёфа больше никаких намеков на фрактальную размерность.

Булиган.Определение размерности Кантора – Минковского – Булигана (см. главы 5 и 39) гораздо менее удовлетворительно, нежели определение Хаусдорфа – Безиковича, но мне все же хотелось бы сказать здесь несколько слов в защиту Жоржа Булигана (1889 – 1979). Его многочисленные труды сейчас мало кто читает, даже в Париже, однако в те времена, когда я был студентом и сдавал ему экзамены, они пользовались большой известностью. Его книги всегда напоминают мне о том, кто именно ввел меня в мир «современной» математики, и я часто задаюсь вопросом, смогли бы другие – не столь мягкие и человечные, но, возможно, более правильные в педагогическом смысле – способы представления материала дать такое же интуитивное понимание предмета, которое в случае необходимости всегда под рукой и никогда меня не подводило. Наверное, нет. Доживи Булиган до сегодняшнего дня и окажись свидетелем великих побед геометрии, которую столь беззаветно любил, он, я уверен, остался бы доволен увиденным.

ФУНКЦИИ ВЕЙЕРШТРАССА

Непрерывные, но нигде не дифференцируемые функции Вейерштрасса оказали столь сильное воздействие на развитие математики, что становится любопытно выяснить, не следует ли их история образу, нарисованному Фаркашем Бойяи в письме к своему сыну, Яношу: «Есть доля истины в том, что у многих вещей есть своя эпоха, в течение которой одни одновременно встречаются в самых различных местах – так весной на каждом склоне можно найти цветущие фиалки». Еще, похоже, слетаются соавторы на мед возможной публикации.

Однако в данном случае события разворачивались совершенно иначе. Трудно поверить, но Вейерштрасс так и не опубликовал своего открытия, хотя и прочел о нем лекцию в Берлинской академии наук 18 июля 1872 г. Конспект лекции попал-таки в изданное значительно позднее «Собрание сочинений» [588], однако мир узнал об открытии Вейерштрасса только в 1875 г. из статьи Дюбуа - Реймона [115] (там же эти функции были впервые названы именем первооткрывателя). Таким образом, год 1875 является не более чем удобной символической датой для обозначения начала Великого кризиса математики.

Дюбуа – Реймон пишет, что «метафизика этих функций скрывает, по всей видимости, множество загадок, и я не могу избавиться от ощущения, что поиски ответов на них приведут нас к границе наших интеллектуальных возможностей». Возникает и другое ощущение: никто, похоже, особенно и не спешил выяснить, где же находятся эти самые границы. Те из современников, кто было подступился к задаче (Гастон Дарбу, например), тут же отступили и ударились в крайний консерватизм, у других же и на это духу не хватило. Кроме того, невольно вспоминается другая – значительно более известная – история о Гауссе, скрывающем свое открытие неевклидовой геометрии «из страха перед бунтом беотийцев» (из письма Гаусса к Бесселю от 27 января 1829 г.). (Позднее, однако, Гаусс открылся сыну своего друга Яношу Бойяи – с катастрофическими последствиями для рассудка последнего – после того, как Янош Бойяи опубликовал статью о собственном открытии неевклидовой геометрии, совершенном, разумеется, независимо от Гаусса.) Наконец, на память приходит данный однажды Кантору совет Миттаг – Леффлера, суть которого заключается в том, что не стоит воевать с редакторами, нужно лишь придержать свои наиболее дерзновенные открытия до тех пор, когда мир созреет для них. Можно по пальцам перечесть случаи, когда самые передовые деятели науки с такой необычайной неохотой воспринимали новое, как в этих трех не похожих одна на другую историях.

Помимо Вейерштрасса здесь следует упомянуть еще три имени. Уже давно ходят слухи (зарегистрированные в письменном виде в [443]), что Риман приблизительно в 1861 г. демонстрировал своим студентам функцию R(t)=∑n −2cos(n 2t) , которая являлась, по его словам, непрерывной и недифференцируемой. Мы, однако, не располагаем ни точной формулировкой утверждения Римана, ни его доказательством. Более того, если термин «недифференцируемая» означает «нигде не дифференцируемая», то любое предлагаемое доказательство должно быть ошибочным, поскольку в работах [169] и [528] совершенно недвусмысленно показано, что функция R(t) имеет положительную и конечную производную в определенных точках. Функцией Римана интересовался также и Кронекер, что еще более подчеркивает, насколько занимал этот вопрос умы тогдашних математиков. (Для расширения знаний по истории вопроса рекомендую обратить внимание на [410], [207] и [116, 117, 118, 119].)

Больцано, чье имя связано с именем Вейерштрасса в другом, более широко известном контексте, также фигурирует в этой истории. Бернард Больцано (1781 – 1848) – один из немногих подпольных героев от математики, бóльшая часть трудов которого оставалась невостребованной вплоть до начала третьего десятилетия XX в. – описал в 1834 г. близкий аналог функции Вейерштрасса, но не смог разглядеть того ее свойства, благодаря которому она приобретает для нас столь большое значение (см. [526], с. 8).

Третий персонаж, не получивший широкой известности ни при жизни, ни посмертно, играет в нашей истории вторую по значимости после Вейерштрасса роль. Шарль Селлерье (1818 – 1890) преподавал в Женеве и не опубликовал ничего сколько-нибудь заметного, однако в бумагах, оставшихся после его смерти, обнаружилось неожиданное «откровение». Одна из папок, недатированная, но помеченная «Очень важно и, полагаю, ново. Проверено. Можно публиковать в настоящем виде», содержала рукописный текст, описывающий предельный случай D=1 функции, идентичной функции Вейерштрасса, с известными выводами. Пожелтевшие страницы показали некоему ученому по фамилии Кайе, который добавил к тексту примечание (откуда, собственно, и взяты вышеприведенные сведения) и незамедлительно опубликовал его в виде статьи [73]. Публикация вызвала некоторый умеренный интерес (особенно со стороны Грейс С. Юнг). В 1916 г. Рауль Пикте вспоминал, что когда он был студентом у Селлерье (приблизительно в 1860 г.), тот упоминал на занятиях об этой своей работе. Письменных свидетельств, однако, не сохранилось, и в итоге первенство Селлерье так и осталось недоказанным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x