Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, мы измеряем огромное количество расстояний в ярдах и в футах и изучаем распределение первых цифр. Как много величин имеют первую значащую цифру 2? Это множество включает и 2,1, и 28, и 0,213, и 299,8 ярда. В обозначениях, которые мы приняли в предыдущем разделе, доля величин такого рода по отношению ко всем измерениям [118] Помните, что f (3) равно доле величин, мантисса которых меньше 3, а именно 1 или 2. Поэтому мы вычитаем долю измерений, начинающихся на 1. равна f (3) – f (2).

А теперь переведем наши измерения в футы. Иными словами, просто умножим всё на 3. 2,1 ярда равны 6,3 фута. Измерения в ярдах с первой значащей цифрой 2 превратятся в измерения с первой значащей цифрой от 6 до 9, не включая 9. Вы удивлены?

Вначале может показаться, что, если первая значащая цифра величин в ярдах равна 2, первая значащая цифра величин в футах будет равна 6. Это не так: 2,8 ярда равны 8,4 фута. Если мантисса измерений в ярдах находится в пределах от 2 до 3 (не включая 3), мантисса тех же измерений в футах будет в пределах от 6 до 9 (не включая 9).

Какая доля измерений имеет первую значащую цифру 6, 7 или 8? Ответ [119] Величина f (9) равна доле величин, мантисса которых меньше 9. Поэтому мы вычитаем долю величин, начинающихся на 1, 2, 3, 4 и 5. : f (9) – f (6).

Близится кульминация: мы имеем дело с одними и теми же измерениями в разных единицах длины, поэтому доля измерений в ярдах с мантиссой 2 будет равна доле измерений в футах с мантиссой 6, 7 или 8. Иными словами, f (3) – f (2) в ярдах равно f (9) – f (6) в футах. Посмотрите на рисунок. Оба прямоугольника символизируют всю совокупность наших измерений: первый прямоугольник – в ярдах, второй прямоугольник – в футах. Серая область в первом прямоугольнике обозначает измерения с мантиссой 2. Соответствующая область во втором прямоугольнике обозначает измерения с мантиссой 6, 7 или 8.

Важно понимать что обе закрашенные области идентичны Так что доля измерений в - фото 206

Важно понимать, что обе закрашенные области идентичны! Так что доля измерений в ярдах с мантиссой 2 равна доле измерений в футах с мантиссой 6, 7 или 8.

Рассмотрим более общий случай. Вообразим, что мы собрали множество измерений и хотим выяснить, сколько из них имеют мантиссу меньше определенного числа a . Доля величин, удовлетворяющих этому условию, равна f ( a ).

Мы переводим результаты в другие единицы измерения. Пусть коэффициент будет равен числу b [120] Если мы переведем ярды в футы, то b = 3. Для других величин это число другое. . Иными словами, если длина объекта в одних единицах измерения равна 23,5, в других она будет равна 23,5 × b .

Напомню, что f ( a ) равно доле величин с мантиссой от 1 до a , не включая a . Те же величины в других единицах имеют мантиссу строго меньше ab [121] Нас ждет прокол, если ab >10 или ab < 1. Эта проблема поддается разрешению, но пока мы просто будем рассматривать только варианты, при которых 1 ≤ ab ≤ 10. . Их доля равна f ( ab ).

На языке формул тезис о равенстве долей величин с мантиссой меньше a в одних единицах и с мантиссой меньше ab в других единицах выглядит так:

f ( a ) = f ( ab ) – f ( b ).

Или:

f ( ab ) = f ( a ) + f ( b ). (*)

Новый вопрос: какого рода функция удовлетворяет этому правилу и условиям f (1) = 0 и f (10) = 1?

Что дают логарифмы [122] Этот раздел должен освежить ваши знания о десятичных логарифмах. Если вы знакомы с темой, можете листать дальше. ?

Некоторые математические операции можно проделать наоборот. Например, мы возводим в квадрат какое-нибудь число: 6² = 36. А теперь проделываем обратную операцию – извлекаем квадратный корень: картинка 207Для положительных чисел операции возведения в квадрат и извлечения квадратного корня обратны друг другу. Операция, обратная возведению в степень, называется извлечением логарифма .

Например, 10⁴ = 10 000. Мы проделываем наоборот операцию возведения в степень и применяем логарифмическую функцию [123] В оригинале десятичный логарифм обозначен log в соответствии с американской традицией пропускать нижний индекс «10», когда речь идет о десятичном логарифме. В русскоязычной литературе используется обозначение lg( x ). – Прим. пер. :

lg(10 000) = 4.

Можно воспринимать логарифмическую функцию как ответ на вопрос: «В какую степень возводить?» В какую степень нужно возвести 10, чтобы получить некое число? Скажем, какая степень 10 дает 1000? Поскольку 1000 = 10 × 10 × 10 = 10³, ответ равен 3. Иными словами, lg(1000) = 3.

Несложно уяснить, что происходит, когда мы возводим 10 в степень, равную целому положительному числу, – мы просто перемножаем 10 заданное число раз:

Если мы посчитаем нули в одной из степеней 10 то поймем значение логарифма - фото 208

Если мы посчитаем нули в одной из степеней 10, то поймем значение логарифма:

lg(1 000 000 000) = 9.

Возведение 10 в дробную степень несколько сложнее. Ключевая идея здесь – понять, чему равно произведение 10 m и 10 .

Чему равно произведение 10⁶ × 10⁵? Не бойтесь, перемножать десятки просто. Давайте распишем нашу формулу:

Каков результат Нет нужды перемножать Просто посчитайте сколько раз - фото 209

Каков результат? Нет нужды перемножать! Просто посчитайте, сколько раз встречается 10 в правой части формулы: одиннадцать. Иными словами,

10⁶ × 10⁵ = 10 11.

Таким образом, для целых положительных степеней

10 m × 10 = 10 m + .

Это тождество называется законом умножения степеней .

Ключевая идея вычисления дробной степени – применение данного закона для любых показателей степени. Давайте посмотрим, к чему это приведет.

Возьмем 10 0,5. Мы можем не знать, чему оно равно, но нам известно, чему равно произведение 10 0,5× 10 0,5. А именно:

10 0,5× 10 0,5= 10 0,5 + 0,5= 10.

Если умножить 10 0,5само на себя, получится 10. Таким образом, 10 0,5равно квадратному корню из десяти [124] Возьмите калькулятор, посчитайте обе величины и убедитесь, что я не ошибся. :

Так мы можем посчитать все степени 10 На рисунке вы видите график функции 10 х - фото 210

Так мы можем посчитать все степени 10. На рисунке вы видите график функции 10 х при x от 0 до 1.

При каком значении x выполняется условие 10 х = 2? При взгляде на график функции 10 х кажется, что подойдет x = 0,3. Если мы возьмем калькулятор, то выясним: 10 0,3≈ 1,99526… Близко, но не равно точно 2. Чуть-чуть увеличим степень. Попробуем x = 0,301; результат 10 0,301≈ 1,99986… Ближе, но все еще мимо цели. Нам нужно число немного больше. Величина x должна быть равна 0,30102999566398114… Это и будет log(2). (Вы уже встречали такое число раньше. Отыщите его!)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x