Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

b = ue, c = ve ,

где u и v – целые числа. Следовательно,

a = c + qb = ve + q ( ue ) = ( v + qu ) e ,

и e – еще и делитель a .

Итак, мы доказали, что общие делители a и b совпадают с общими делителями b и c . Таким образом,

НОД ( a, b ) = НОД ( b, c ). (C)

Посмотрим, как тождество (C) позволит нам эффективно вычислить наибольший общий делитель двух больших целых чисел: a = 10 693 и b = 2220.

Мы делим a на b и видим, что 2220 умещается в 10 693 четыре раза [136] 10 693 = 4 × 2220 + 1813. , при этом остаток c = 1813. Следовательно,

НОД (10 693, 2220) = НОД (2220, 1813).

Переходим к следующей итерации. Введем обозначения a ' = 2220 и b ' = 1813. Поделим a ' на b ' и увидим, что 1813 умещается в 2220 всего один раз [137] 2220 = 1 × 1813 + 407. и остаток c ' = 407. На основании тождества (C)

НОД (10 693, 2220) = НОД (2220, 1813) = НОД (1813, 407).

На новом шаге a '' = 1813 и b '' = 407. После деления мы обнаружим, что 407 умещается внутри 1817 четыре раза [138] 1813 = 4 × 407 + 185. и остаток c '' = 185. Опять-таки на основании (C)

НОД (10 693, 2220) = НОД (2220, 1813) = НОД (1813, 407) = НОД (407, 185).

На сей раз мы имеем дело с числами a ''' = 407 и b ''' = 185. Деление показывает, что 185 умещается внутри 407 два раза [139] 407 = 2 × 185 + 37. и остаток равен c ''' = 37. Таким образом,

НОД (10 693, 2220) = НОД (2220, 1813) = НОД (1813, 407) = НОД (407, 185) = НОД (185, 37).

Мы почти у цели! Делим a '''' = 185 на b '''' = 37 и – подумать только! – получаем ровно 5. Следовательно, НОД (185, 37) = 37. Завершаем наши выкладки:

НОД (10 693, 2220) = НОД (2220, 1813) = НОД (1813, 407) = НОД (407, 185) = НОД (185, 37) = 37.

Мы нашли наибольший общий делитель 10693 и 2220, проделав всего пять операций деления!

Алгоритм Евклида для поиска наибольшего общего делителя [140] В главе 6 мы познакомились с концепцией взаимно простых чисел. Вот альтернативное определение: число a взаимно простое с b , если НОД ( a, b ) = 1. Так как алгоритм Евклида позволяет эффективно вычислить НОД двух чисел, он также позволяет выяснить, являются ли два числа взаимно простыми. можно сформулировать так:

Поиск НОД: алгоритм Евклида

На входе:два положительных целых числа a и b .

На выходе:НОД ( a, b ).

1. Найти частное q и остаток c при делении a на b .

2. Если c = 0, то НОД ( a, b ) = b .

3. В противном случае вычислить НОД ( b, c ) = НОД ( a, b ).

Проверьте, насколько хорошо вы усвоили алгоритм Евклида, и вычислите НОД (1309, 1105). Можете воспользоваться калькулятором. Сверьтесь с ответом в конце главы.

Наименьшее общее кратное

Концепция наибольшего общего делителя тесно связана с концепцией наименьшего общего кратного . Для двух положительных целых чисел (допустим, 10 и 15) наименьшее общее кратное – это самое маленькое положительное целое число, которое делится на то и на другое; в нашем случае ответ равен 30. Мы будем использовать обозначение НОК ( a, b ).

Наименьшее общее кратное полезно при сложении дробей. Например, для сложения 1/10 и 1/15 вначале нужно привести обе дроби к общему знаменателю. Это может быть любое число, которое делится на 10 и на 15; проще всего найти НОК. Так как НОК (10, 15) = 30, то

Найти наименьшее общее кратное для маленьких чисел не слишком сложно но как - фото 214

Найти наименьшее общее кратное для маленьких чисел не слишком сложно, но как быть с большими числами? Скажем, чему равно наименьшее общее кратное 364 и 286?

Один вариант состоит в том, чтобы последовательно выписывать числа, кратные первому и второму, и уповать, что рано или поздно они совпадут [141] Данный метод неэффективен, однако не безнадежен. Мы знаем, что 364 × 286 кратно тому и другому числу. Будем надеяться на то, что набредем на общее кратное поменьше. :

числа, кратные 364 → 364, 728, 1092, 1456, 1820, 2184, …

числа, кратные 286 → 286, 572, 858, 1144, 1430, 1716, 2002, …

Вскоре мы дойдем до 4004 и запишем ответ: НОК (364, 286) = 4004.

Вот еще одна идея. Разложим 364 и 286 на простые множители:

364 = 2 × 2 × 7 × 13;

286 = 2 × 11 × 13.

Числа, кратные 364, должны делиться на 2 × 2 × 7 × 13, а числа, кратные 286, должны делиться на 2 × 11 × 13. При конструировании наименьшего общего кратного мы должны воспользоваться этими простыми числами – два раза по 2, затем 7, 11 и 13 (нам ни к чему брать два раза по 13):

2 × 2 × 7 × 11 × 13 = 4004.

Разумеется, 4004 и есть наименьшее общее кратное 364 и 286.

Этот метод выглядит потрясающе, однако – как я уже объяснил в главе 1 – мы не знаем эффективного алгоритма разложения больших чисел на простые множители.

Хотя разложение на простые множители не дает достаточно эффективного алгоритма вычисления НОК двух чисел, оно делает важную подсказку. Давайте сравним, как используется разложение на множители при вычислении НОК и НОД.

Вот семь простых множителей двух чисел, взятые вместе:

Мы находим НОД 364 286 с помощью двух общих простых делителей 2 и 13 Для - фото 215

Мы находим НОД (364, 286) с помощью двух общих простых делителей: 2 и 13.

Для вычисления НОК (364, 286) нам нужны все простые числа в двух списках, хотя нет нужды брать два раза по 13 (достаточно одного) и три раза по 2 (достаточно двух). Иными словами, мы берем каждое простое число из того списка, где оно встретилось большее число раз. Таким образом, нам нужны пять чисел: 2, 2, 7, 11 и 13.

Проверяем:

НОД (364, 286) = 26 = 2 × 13;

НОК (364, 286) = 4004 = 2 × 2 × 7 × 11 × 13.

Заметим, что при подсчете НОК мы выкинули именно те числа, которые нужны для вычисления НОД:

Иначе говоря,

364 × 286 = (2 × 2 × 7 × 13) × (2 × 11 × 13) = (2 × 2 × 7 × 11 × 13) × (2 × 13) = НОК (364, 286) × НОД (364, 286).

Мы можем обобщить этот пример. Для любых двух целых положительных чисел a и b

a × b = НОК ( a, b ) × НОД ( a, b ).

Таким образом,

Так как алгоритм Евклида позволяет эффективно вычислить наибольший общий - фото 216

Так как алгоритм Евклида позволяет эффективно вычислить наибольший общий делитель двух чисел, он также годится – с учетом тождества (D) – для эффективного вычисления наименьшего общего кратного.

Часть II Геометрические фигуры Глава 13 Треугольники Треугольник - фото 217

Часть II

Геометрические фигуры

Глава 13

Треугольники

Треугольник – геометрическая фигура, состоящая из трех прямых отрезков, соединяющих три точки. В главе 13 мы рассмотрим общеизвестные свойства этих незамысловатых фигур и приподнимем покров над их тайнами. А начнем мы с двух всем знакомых формул: суммы углов и площади треугольника.

В сумме все это дает 180°

Возможно, самый известный факт, касающийся треугольников, – то обстоятельство, что если мы измерим все три угла и сложим эти величины, то получим 180°.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x